Technical Report 1735
January 1997

Automated Integrated Communications Systems (AICS)
Integrated Network Manager Prototype Documentation

E. W. Jacobs M. E. Inchiosa L.M. Gutman C. T. Barber

10970210 141

Ocean Surveillance Center
RDT&E Division

San Diego, CA
92152-5001

Approved for public release; distribution is unlimited.

~ DISCLAIMER NOTICE

" THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
COLOR PAGES WHICH DO NOT
REPRODUCE LEGIBLY ON BLACK
AND WHITE MICROFICE

Technical Report 1735
January 1997

Automated Integrated
Communications
Systems (AICS) Integrated
Network Manager
Prototype Documentation

Jacobs
Inchiosa
Gutman

E.W.
M. E.
L. M.
C. T. Barber

NAVAL COMMAND, CONTROL AND
OCEAN SURVEILLANCE CENTER
RDT&E DIVISION
San Diego, California 92152-5001

H. A. WILLIAMS, CAPT, USN ' DR.R. C.KOLB
Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

The work detailed in this report was performed for the Networking Design and Analysis Branch
(Code D827) of the Communications Systems Engineering and Integration Division (Code D82) of
the Communications Department (Code D80) of the Research, Development, Test and Evaluation
Division of the Naval Command, Control and Ocean Surveillance Center by the Ocean Survey Sys-
tems Branch (Code D364). Funding was provided by the Space and Naval Warfare Systems Com-
mand (SPAWAR PD 13, LCDR Glenn Darling) under program element 0603794N. This report
covers work performed from December 1995 to September 1996.

Released by Under authority of

R. L. Merk, Head R. J. Kochanski

Networking Design and Analysis Branch Communications Systems
Engineering and Integration
Division

ACKNOWLEDGMENTS

The authors wish to thank Brian Clingerman of SPAWAR 176E for his support and interest in this
project.

SB

EXECUTIVE SUMMARY

This report documents the Integrated Network Manager (INM) prototype devel-
opment and integration effort, undertaken as part of the FY96 Automated Integrated
Communications Systems (AICS) program. The AICS architecture describes a hier-
archy of INMs, where local operations centers (LOCs), the INMs at the at the lowest
level of the hierarchy, are responsible for the communications/network assets under
their purview. The AICS architecture is primarily targeted for an environment where
INMs are commonly separated from other INMs by RF links. The INM prototype
work centered on development of the AICS Management Application (AMA). The
AMA is a network management application that provides several Navy-specific func-
tions to the INM. These functions include the following:

e Managing the network within the framework of the AICS architecture;

e Managing the network based on mission specific communication plans
and policy rules;

¢ Providing a standards-based method to describe aggregate network status
information;

¢ Presenting Navy operators with an understandable description of the
network status in the context of the mission communications plan;

o Facilitating integration of COTS network management programs into the

INM.

The ultimate vision for AICS is a highly automated network management system
where its functions are implemented using standards-based management protocols,
and where many operations are carried out in a virtually unattended mode. The
prototype INM provides a working example demonstrating aspects of this ultimate
vision, and provides a starting point for development of a network management system
that can evolve with new technology.

CONTENTS
1. INTRODUCTION ..o e e 1
2. INM PROTOTY PE . e 5
2.1 OVEIVIEW « .ttt ettt et e e e e e e e e e 5
2.2 AICS Management Applicationooeuiirininninininnnnnnn. 8
2.2.1 AA Management Information Base S 8
2.2.2 AMA Design and Operationcoiieiiiiiiinininenneannin. 11
2.2.2.1 Management Doctrine Procedureso..iia.LL. 12
2.2.2.2 INM SNMP Session Configurationc..coveiiiiinininnaa... 14
2.2.2.3 MLM Configurationcooiiiiiiiiininiineiiiianiiaannnn... 15
2.2.2.4 Operational Status Dependency Configuration 16
2.2.2.5 RMON Configurationcooiiiimininiiniaaaeiiaaanan.s 18
223 AMA Display ..t 18
2.3 COTS Product Integrationcoiiiiiiiiiiiiii .. 19
2.3.1 COTS SNMP Management Platform Program Integration 21
2.3.2 COTS MLM Integrationco.ieiuiiiuiiniiiiiiaaaanan.n. 23
3. SUMMARY AND CONCLUSIONS .. i 25
4. REFERENCES ... i e e e e e 29
APPENDIX A: AICS MANAGEMENT APPLICATION AGENT MIB 31
APPENDIX B: AICS MANAGEMENT APPLICATION CODE 73
FIGURES
1. An INM operational example 6
2. Diagram of the MDP 16
3. AMA Display . cnviiii 20

11l

1. INTRODUCTION

As part the FY96 AICS program, a prototype Integrated Network Manager (INM)
has been developed. The prototype INM represents both a development and integra-
tion effort. The requirements of the INM are described in the AICS Network Manage-
ment Architecture (NMA) and Network Management System Segment Specification
(SSS) documents (reference 1). The AICS Management Application (AMA), a com-
ponent of the prototype INM, is an application developed to provide requirements

- delineated in the NMA and SSS which are specific to Navy networks, requirements
that are not currently provided by COTS products. The AMA was designed to fa-
cilitate integration of COTS products so as to minimize the development of custom
software, and to take advantage of COTS products when they do fulfill INM re-
quirements. To allow for flexibility in implementation, the INM prototype design is
modular, with the AMA designed such that it is not restricted to integration with
specific COTS products. The purpose of the INM prototype is to provide the de-
velopers of a fieldable AICS implementation some clarification on how to interpret the
requirements contained in the NMA and SSS, and to provide a good starting point
for future implementation efforts.

The NMA and SSS describe an architecture where an AICS Integrated Network
Manager (INM) at the bottom of a chain of INMs is responsible for the communic-
ations/network assets under its purview (i.e., that are part of its unit). The bottom
level INM is referred to as a Local Operations Center (LOC). Units that contain
higher level INMs (e.g., Regional Operation Centers (ROCs) or Network Operation
Centers (NOCs)) will also contain an LOC which will directly manage the local units
communications/network assets. The AICS architecture is primarily targeted for an
environment where INMs are commonly separated from other INMs by RF links.

The majority of INM tasks occur at the LOC level of the management hierarchy,
while at the ROC and NOC level, a main INM function is to present a display de-
tailing subordinate status information. As a result, much of the work during FY96
has centered on the INM LOC prototype. A brief summary of a LOC’s required
functionality is as follows:

1. Receive communication plans and policy rules statements from higher level

INMs;

2. Configure local assets in accordance with the communications plan and policy
rules;

3. Monitor status of local assets in accordance with the communication plan and
policy rules, and provide status information relevant to the current mission in a
format understandable to the present operator;

4. Report filtered management information to higher level INMs. In accordance
with policy rules, reporting will be done on a periodic basis, a fault-driven basis,

and/or upon request.

The communication plans and policy rules statements introduced in item 1 are
central to the design of the AMA. The communications plan describes the equipment,
services, resources, applications, and management hierarchy for the current mission.
As a basis for the AMA, a Simple Network Management Protocol (SNMP) Manage-
ment Information Base (MIB) has been written which encompasses the information
contained in a communications plan. An SNMP agent associated with the AMA
called the AMA Agent (AA) implements this MIB. Included in the MIB are objects
describing the communications plan and the operational status of all the elements of
the communications plan. The MIB is written hierarchically, the result being that the
operational status objects represent aggregate status ranging from the status of very
specific network elements to the overall operational status of the mission. At the start
of a new mission, the values of a set of MIB objects are set in accordance with the
communications plan for the new mission, and the AA is initialized. At initialization,
the other AMA inputs are the policy rules. The policy rules describe how the elements
of the communications plan are to be managed. The interplay of the communications
plan and the policy rules will be described in more detail in subsequent sections.

As indicated in item 2, the NMA and SSS require that the INM perform config-
uration management tasks. Because of the lack of a standards-based authentication
mechanism, typical COTS SNMP agent software does not permit configuration. This
problem will be solved when authentication is incorporated into SNMP (which will
occur relatively soon), and when the support for authenticated SNMP becomes com-
monly available in COTS products (which could take considerably longer). In the
INM prototype, the AMA performs some automated configuration management tasks,
although these tasks are limited to configuration of network elements closely asso-
ciated with the INM itself. More details on configuration of the COTS Mid Level
Manager (MLM) and on the Remote Monitoring (RMON) probe are given in sub-
sequent sections. It is envisioned that, as standards-based configuration of COTS
devices becomes implementable, automated configuration of network devices and ap-
plications in accordance to the communications plan and policy rules will become a
more important function of the INM.

Items 3 and 4, monitoring of the network and reporting of required information
based on the communications plan and policy rules, are demonstrated in the INM
prototype. Subsequent sections will detail how the communications plan, policy rules,
integration of the AMA with COTS products, and SNMP are utilized to accomplish

these tasks.

The ultimate vision for AICS is a highly automated system where functions 1
through 4 (along with other required functions as described in the NMA and SSS

2

documents) are implemented using standards-based management protocols, and may
be carried out in a virtually unattended mode. The prototype INM documented
here is intended to give a preview of this ultimate vision, and to lead AICS network
management development toward a flexible design that can evolve with the available
technology.

Section 2 of this document provides details of the INM prototype, and section
3 provides a summary and concluding remarks. Two appendices are also included.
Appendix A is the AMA Agent MIB that is discussed in section 2.2.1, and Appendix
B provides some selected code that is discussed in section 2.2.2.

2. INM PROTOTYPE
2.1 Overview

Figure 1 helps explain the design of the prototype INM by means of an operational
example. The figure shows a sequence of events indicated by the numbered bubbles.
In step 1, a higher level INM (e.g., a ROC), as a result of operator action (using the
AMA interface) or possibly as an automated response from yet a higher level INM,
sends a message to the the local INM LOC indicating it should retrieve the appropriate
information from its databases to initiate the communications plan for a new mission.
The LOC receives the messages, checks that the message is authentic (i.e., that the
message actually came from a superior ROC, and that the message received is identical
to the message that was sent), displays a message to alert the local operator, and
loads the communications plan by initializing the AA. Configuration associated with
the communication plan then begins.

In the current prototype, four different configuration processes are performed.
Each one of these configuration processes is performed as the communications plan
and the policy rules require. The elements of the communications plan relevant to each
particular configuration process are identified, and the configuration is performed in
accordance with the applicable policy rules.

The first configuration performed is to create handles to enable SNMP commu-
nication between AMAs and other network entities that communicate with the AMA.
This includes SNMPv2-USEC (references 2 and 3) handles to provide authenticated
communication between AMAs, SNMPv1 handles so as to provide information to SN-
MPv1 management entities, and a trap daemon to enable the AMA to receive traps
from SNMPv1 agents. As part of this configuration, processes for periodic reporting
(SNMPv2 polling) and fault driven reporting (SNMPv2 informs) between the members
of the INM hierarchy are set up and initiated.

The second configuration performed is to establish the dependency of the opera-
tional status of elements of the communications plan (which are represented by opera-
tional status mib objects). The indexing of objects in the mib is such that a hierarchy
of operational status objects exists. The dependence between the operational status
objects is set up based on the communications plan and a set of policy rules.

The third configuration performed is to configure periodic polling of network ele-
ments, filtering of the resulting responses from network elements, and filtering of
unrequested messages (i.e., SNMP traps) from network elements. Once again, the
communications plan is consulted to ascertain what network elements are utilized in
the current mission, and a set of policy rules are consulted to determine the polling
and the response and trap filtering procedure to employ. There are many ways one
could implement this polling and filtering process. For instance, building this capab-
ility directly into the AMA would be a straightforward task. Alternatively, a variety

d

sjsanbai smejs pue uoneindyuoo

ue(duIooUOISSTIA @

SULIRLY

sosuodsoy] smels @

(suopeunsap
pue suoneaijioads uiee

‘sanpayos Juijjod) ojur Syyuo) 4

suodoy] smeig 4

@ SULILY 4 ®
N\

sisanbay] snieig, @

snjels uonensyuo)

d 18207

[Superior AMAs J

suoday smelg 4

SULIL|Y 4 @

suoday smeig 4

swiely 4

-
)
(4 WTIA Jo uonemsyuo)
L dan |
{ A
*Ko11od 0y Buip1osse suonodung
wswadeuew £11n03s pue ‘oduriiojiad
e Jjney ‘voneIndyuos ayeniug 1o WIojIg
HHOVO dIN \ J
~
wasy s, VIV \"A% ‘uoneuIIOjuL SNjEIS pue
_ uoneinSiyuos junsuoissiw Aegdsiq
J
VIV
\. J
aseqereq aseqereq sprodoy/smiess 10 sisanbay 4
uejJuuwio) Korjod

(010 ‘suoneoytoads
uneje ‘sjuowasinbar uejdwiwos

JUOISSIW ‘$52008) 0jul S1yuo)) 4

suofjeorjddy juswaSeuep
pazijeroads 1010

yusuodwood 1efeuewt WV

ojuf uoneIn3Yuo)

Realne

[

of COTS products of varying capabilities could be employed. In this case it would
be the AMA’s task to configure and start the COTS program. As indicated by steps
2 and 3 in figure 1, in the current prototype a COTS mid-level manager (MLM) is
used to fulfill the polling and filtering requirement. A module of the AMA program,
labeled the management doctrine procedures (MDP) in figure 1, extracts elements
from the communications plan where monitoring will be required, applies the policy
rules relevant to the monitoring of these elements, and (re)configures and (re)starts

the MLM.

Once the AMA is configured, the operator is presented with a display showing
the hierarchy of INMs, and the operational status of the network elements relevant
to the current communications plan. This display presents the underlying status of
the network as it relates to the communications plan in terms that are understandable
to the Navy operator. This display is not meant to replace the display provided by
the SNMP Management platform program. The AMA'’s display does not provide
a network map, auto-discovery, or other features that are already provided by such
programs. Continuing with the example of figure 1, the MLM, now properly configured
for the current mission, monitors the network by carrying out scheduled polling of
network assets (step 4), and stands ready to process responses and traps it receives
(step 5). When appropriate, the MLM then sends or forwards appropriate traps to
the local AMA (step 6).

In response to received traps, the AMA then modifies the value of appropriate
operational status objects in the MIB cache. The value of operational status objects
which are dependent on the modified objects are recomputed. Based on the fault
reporting rules configured for the current mission, SNMP inform requests are sent
to superior INMs (step 7). The AMA and SNMP management platform program
(HP OpenView Network Node Manager (reference 4) (OV-NNM) in figure 1) status
displays are updated. In the current prototype, an object representing the AMA ap-
plication has been incorporated into the OV-NNM topology display. The status of
the symbol tracks the overall mission operational status as determined by the AMA.
An operator who is observing the OV-NNM topology display would be alerted to
status changes as perceived by the AMA. In addition, alarm messages may pop up
on the LOC display to alert the operator to alarm conditions and suggest an appro-
priate course of action. Ultimately automated fault response systems may have to be
integrated into the system as well.

This example briefly introduces the role of the AMA, AA, MLM, and the SNMP
management platform program. It also introduces how the communication plan and
policy rules are used to govern how INMs communicate, how operational status ob-
jects depend on one another, and how monitoring of local assets at the LOC level
is performed. Not included in this example, but supported by the current prototype
INM is a fourth configuration process, configuration of a Remote Monitoring (RMON)
probe. In the following sections, a more detailed look at various components of the

7

INM is present, with concentration on the development, integration, and operation of

the AMA.
2.2 AICS Management Application

COTS SNMP network manager platform programs such as HP OpenView Network
Node Manager (OV-NNM) provide an SNMP management platform around which an
INM can be built. Typically, more specialized network applications are layered on
top of such a platform, often using the platforms application programming interface
(API). The AMA is one such specialized network application. Because the AMA is a
prototype effort, no commitment to dependence on a particular COTS SNMP man-
agement platform API was made. Instead, development of the AMA was done so that
it might be loosely integrated with any SNMP management platform. The NMA and
SSS require secure communication between INMs. If SNMP is to be used for INM to
INM communications, a version of SNMPv2 supporting authentication would be re-
quired. As SNMPv2 with security features is still bogged down in the standardization
process, there is not a wide variety of development tools available that support it. The
desirability of loose coupling to a particular COTS SNMP management platform, and
the requirement of authenticated INM communications were two compelling reasons to
use the Tcl/Tk extension, Scotty, for in-house developed components of the prototype
INM. Tcl/Tk is a powerful, highly portable, public domain scripting language that
allows for customized extensions to be incorporated into the language (reference 5).
Scotty is a Tcl/Tk extension for writing network applications (reference 6). Scotty
provides the tools necessary to write both SNMP management and agent applications
supporting both SNMPv1 and SNMPv2-USEC protocols.

A functional diagram of the AMA is provided by figure 1. The AMA 1is the
focal point to which management information flows from higher level INMs, and from
which management information flows to local devices and/or local device management
applications. The AMA takes the communications plan and policy rules as input, and
proceeds to carry out its functions as summarized in the previous section.

2.2.1 AA Management Information Base

The current version of the AA MIB is included in appendix A. The MITRE report
AN/S5Q-33(V)8 Control and Management Segment Information Reference Model
(IRM) (reference 7) was used as a starting point for the development of the AA
MIB. The IRM describes a vision of what information might be needed to support
the required functionality of the AICS management software. Furthermore, the IRM
was developed to be used as the starting point for development of a MIB similar to
that required for the AMA. Included in the IRM are management objects associated
with the INM itself (e.g., objects related to management hierarchy and security), as
well as objects describing the unit’s network /communication assets. A syntactic con-
version of the suggestions in the IRM to a prototype AA MIB would have been a
relatively straightforward task, but would have introduced problems. The IRM in-

8

troduced some general concepts (e.g., “Network Domains”) that could be used to
characterize the various aspects of the network. To facilitate implementation, some
of these general concepts were abandoned in favor of more focused definitions. As a
result, some of the broad functionality inherent in the IRM was lost in favor of a MIB
for which a clearer path to an implementation could be seen.

The AA MIB is quite different from the typical MIB written to support a specific
hardware device. If one was to consider that the requirements outlined in the NMA
and SSS represent a sort of application, then the AA MIB could be considered an ap-
plication MIB. Again, the AA MIB is quite different from a typical application MIB in
that the “application” is not rigorously defined. Therefore, the need or appropriateness
for using the AA (and AA MIB) as a component of the AMA could be argued. Several
compelling reasons were factors in choosing to use an SNMP Agent as the basis for the
AMA. First, the AA provides a means for using a standards-based protocol, SNMP,
for AMAs to use to communicate with each other. As SNMP is layered on User
Datagram Protocol (UDP) and is specifically designed to conserve bandwidth, and
as INMs are commonly separated by low-bandwidth RF links, using SNMP for this
purpose is particularly appropriate. Second, the AA makes management information
relevant to the AICS management tasks available using a standards-based protocol.
Included is aggregate status information relevant to the current mission, information
defined and maintained using standards-based methods. Third, the AA MIB may
serve as a standards-based way of defining the requirements of the AMA (i.e., not
only for the prototype, but for development of a fieldable AICS system). In theory, if
future versions of the AA MIB become more robust, the AA MIB could serve to con-
cisely define the AMA interface, enabling independent development of inter-operable
AMAs. In light of this, the idea of employing an AA MIB and some of the concepts
which have been incorporated into the version used in this prototype may be the most
significant contributions of this work.

The AA MIB was designed to hold management information laid out in the context
of a unit’s current mission. Each table in the MIB contains an object whose value
represents the aggregate operational status of the network element identified by the
row in the table. The indexing of the MIB is hierarchical so that a dependency exists
from the highest level aggregate operational status to the aggregate statuses of more
detailed aspects of the network. In this way, the dependency of the overall operational
status of the mission on underlying mission critical applications, the dependency of
the mission critical applications on communications services, the dependency of the
communications services on the lower level network assets, etc., is made available to
the operator.

From a quick review of the AA MIB in appendix A, it is seen that the MIB con-
tains a mission definition group (missionDef), mission communications plan group
(missionCommPlan), unit definition group (unitDef), and unit network group (unitNet).
The mission definition group defines objects that provide a high-level description of

9

the unit’s current mission. Included in this group is the mission identification num-
ber (identifying which communications plan from the communications plan database
is currently in use), the overall operational status of the current mission, and tables
describing the INMs which are superior and subordinate to the local unit. The mis-
sion communication plan group contains two tables. The first table describes the user
applications for the current mission. The second table describes the communications
services these user applications require, and identifies which transmission resources
they utilize. With respect to the OSI seven-layer network model (reference 8), the user
application table is most closely associated with layer seven, and the communications
services table is most closely associated with layers three and four.

The unit definition group defines objects that provide a high-level description of the
local unit. Included in this group is the unit identification number, the type of the unit
and the unit’s INM, and a table describing the components of the unit’s INM. The unit
network group is a collection of tables that describes the communications and network
assets under the INM’s control. The highest level table in the unit network group is
the transmission resource table. A transmission resource is, for instance, a particular
RF network. The transmission resource is the aggregate of all the equipment, from
the link and physical layers, that constitute the particular RF network. On a LOC, the
transmission resource would consist of the aggregate of all the equipment on the local
unit that constitutes the particular RF network. On a ROC, the transmission resource
would consist of this aggregate over all the units subordinate to the ROC. Several other
tables are included in the unit network group, each one indexed such that a hierarchy
exists extending from rather detailed aspects of the equipment and configuration of the
network, all the way to a very high-level description (e.g., a transmission resource).
The tables in the unit network group are most closely related to layers one and two
of the seven-layer OSI network model.

The indexing of the communication services table connects the higher layer tables
in the mission communications plan group into the hierarchy existing in the unit
network group. Each of the aforementioned tables contains an object for the value of
the operational status of the network element identified with the row. These operational
status objects are important to the operation of the AMA, in that they are aggregate
status information that is of interest to the network operator. The last group of the AA
MIB is the INM notification group (inmNotification). The INM notification group
contains tables detailing the dependency of operational status objects, and detailing
the rules for generation of alarms (i.e., inform requests) between INMs. The use of
the INM notification group in conjunction with the operational status objects will be
discussed in more detail in the following sections.

Examination of appendix A reveals that themissionSec, missionConfig, unitSec,

and unitOrg groups have not been written. In addition, the current version of the pro-
totype has not utilized the unitLogPortTable, unitLinkTable, or unitChanTable.
A more complete understanding of the operation of the actual running networks for

10

which the AMA is targeted is required before work at this level of detail would be
worthwhile.

2.2.2 AMA Design and Operation

Appendix B provides some selected AMA code intended to give the reader insight
into the AMA prototype design and operation (reference 9). The code presented in
appendix B is not intended to give a detailed understanding of the program’s operation
(even an experienced Tcl programmer would have difficulty doing this). The code is
clear enough that only basic programming experience is required to obtain a general
idea of its function. The main program for the AMA is in section B.1. A sample
AMA configuration file is given in section B.2. Note that some important program
parameters are set in this configuration file, including the following: whether or not
the AMA should use authenticated communications between INMs; the name of the
MIB files to read; and a list of the items the AMA should attempt to configure. In
this sample file there are four entries in the configurable items list:

a. configuration of the AMA’s INM to INM communication;
b. configuration of a mid-level manager;

c. dependence of operational status variables; and

d. configuration of an RMON probe.

When initiating the main program, the name of the communications plan to im-
plement is passed as a parameter. Towards the middle of the program (section B.1),
the AMA configuration file is read, and the MIB files are loaded. The name of the
communications plan to implement is then passed to a procedure that initializes the
AMA agent. Using the Scotty toolkit, the coding of the agent initialization procedure
was relatively straightforward, although this part of the code is rather lengthy and
hardly understandable to those not familiar with Scotty. Therefore, it is not included
in Appendix B. In short, this procedure reads the communications plan, sets the values
of the MIB objects which describe the communications plan, stores these values so
that they may be accessed via SNMP requests, sets up access restrictions associated
with SNMPv1 community strings and SNMPv2-USEC users and contexts, and sets
up the bindings (i.e., the code to run) associated with writeable MIB objects.

Referring again to section B.1, note that after the agent is initialized, a procedure
is called (Config_Check) that initiates configuration of the entries in the configurable
items list. This part of the code is discussed below. After Config Check has run, the
final step of the main program is to start the AMA display. After the AMA display
starts, the program responds to inputs from its SNMP interface and the AMA display.

The code for the procedure Config Check is given in section B.3, and is quite
simple. A stanza of code exists for each of the entries in the configurable items list.

11

In the simplest cases, this section of code simply calls the procedure Configuration.
In the case of the mid-level manager, first a check is made to see if the local INM has a
mid-level manager, and if so, the procedure Configuration is called (from a separate
process started by Config Check). The procedure Configuration will be discussed
in the next section. If one wanted to extend the capabilities of the AMA (e.g., to
initiate the configuration of other network elements), the only required changes to the
code presented up to this point would be to add entries to the configurable items list
in the AMA configuration file, and to add the corresponding stanza to the procedure
Config Check.

2.2.2.1 Management Doctrine Procedures

A fair amount has been written on implementing network management policies
(references 10, 11, and 12). An attempt was made to draw upon this literature in
hopes of arriving at a relatively intelligent approach to the AMA’s implementation of
policy. Application of management policies, or management doctrine, is an important
concept incorporated into the AMA, therefore, in figure 1, the management doctrine
procedures (MDP) are shown as a separate component of the AMA. The current pro-
totype supports four configurable items that are processed by the MDP. The function
of these configurable items are quite different, therefore, it was necessary that the
MDP design allow for a great deal of flexibility. Furthermore, the MDP should be
such that additional entries can be made in the configurable items list without having
to change existing code. Therefore, the MDP was designed with extensibility as a

primary concern.

The procedure Configuration presented in section B.4, is the top procedure of
the MDP. As discussed in the previous section, it is called once for each of the entries
in the configurable items list. Also of importance to the MDP are two configuration
files holding policy information, specifically, the properties data base file and the policy
rules file. Samples of these files for the INM SNMP session configuration are shown
in sections B.5 and B.6, respectively.

To understand how the MDP works, the concept of property groups and properties
must be introduced. The methodology of property groups and properties is used by the
COTS network management program Nerve Center (reference 13). The methodology
facilitates a flexible application of policy rules, and has been borrowed and adapted
for the AMA. A property group is simply a list of properties. Network elements that
possess the properties in a property group are said to be members of the property
group. The properties data base file associated with INM SNMP session configuration
(section B.5) shows several properties groups, with a list of properties associated with
each property group (in this case there is only one property in each list). In the
context of network management and the AMA specifically, management policy rules
are associated with properties, and are applied to network elements that are members
of a property group containing the given property. The policy rules file (section B.6)

12

shows a list of rules associated with INM SNMP session configuration. Each rule
includes a policy template, and identifies the property that the network element must
possess for the rule to be applicable. The policy template includes labels (which
are associated with the type of network element that has the given property), and
additional parameters that the MDP will need to correctly implement the policy. The
syntax of the policy rules and the policy rule templates (see section B.6) is extremely
general and, therefore, easily adhered to when writing new policy rules.

Referring to section B.4, the first step performed by the procedure Configuration
is to call a procedure (Get Property Group Members $configItem) that examines
the communications plan (i.e., the MIB cache), and extracts all the network ele-
ments that are members of property groups related to the item being configured.
Get Property_Group Members $configltem is a different procedure for each config-
uration item, therefore, if one extends the functionality of the AMA by adding a new
item to the configurable items list, an additional procedure must be written. In prac-
tice, the Get _Property_Group Members _$configltem procedures are similar to each
other and, therefore, are easily written. This step, and the subsequent steps taken by
procedure Configuration are summarized as follows:

a. Extract from the communications plan the network elements that are
members of property groups related to the item being configured;

b. Read the appropriate properties data base file that contains lists of
properties indexed by property groups;

c. Create lists of network elements (or members) indexed by property;
d. Read the policy rule templates from the appropriate policy rules file;

e. Form completed policy rules by expanding the policy rule templates in
combination with the lists of members indexed by property;

f. Call a procedure (Mdp_$configIltem) that will implement the policy
rules.

Once again, the procedure Mdp_$configltem is a different procedure for each
configuration item, therefore, if one extends the functionality of the AMA by adding
a new item to the configurable items list, an additional procedure must be written.

The next four sections are a summary of how the four configurable items currently
supported by the prototype are processed by the MDP. These sections will provide
examples clarifying the operation of the MDP, as well as provide more insight into
how the example of section 2.1 works.

13

2.2.2.2 INM SNMP Session Configuration

For the case of INM SNMP session configuration, in step “a” as described in
the previous section, Configuration calls a procedure that reads the subordinate
and superior INM tables (subTable and supTable), and returns lists of the unit’s
subordinate and superior INMs indexed by the values of subInmType and supInmType
(which in this case define the property groups). Following along with steps b through
f described in the previous section, the properties data base file (section B.5) is read,
lists of members indexed by property are formed, the policy rules file (section B.6)
is read, the lists of members indexed by property are combined with the policy rules
templates, and finally, an expanded set of policy rules are passed to the procedure
Mdp_InmSnmpSession (the Mdp_InmSnmpSession code is relatively long and specialized
and, therefore, not included in appendix B).

Examination of the policy rules file reveals that for the case of INM SNMP session
configuration, there are three types of policy templates: one for configuring the SNMP
session handles themselves; one for configuring SNMP polling (i.e., periodic queries)
between INMs; and one for configuring SNMP informs (i.e., unsolicited fault-driven
messages) between INMs. The first policy template in section B.6 is for setting up an
SNMP session between INMs. It indicates that for each of the local unit’s primary
superior ROCs, Mdp_InmSnmpSession will create an SNMP agent handle using the
max-access context to answer requests from the appropriate ROC IP addresses. The
sixth policy template in section B.6 is similar, but results in SNMP agent handles with
context readOnly for secondary superior ROCs. Similarly, the 14th policy template
results in the setting up of SNMP manager session handles for all the local units
subordinate primary LOCs.

Polling processes are set up by templates like the 15th policy template in section
B.6. When expanded and processed by Mdp_InmSnmpSession, this template sets up a
polling process for all the local unit’s subordinate primary LOCs. The arguments in the
policy template indicate that the (highest level) operational status of the subordinate
should be polled every 60 seconds.

Finally, the second policy template in section B.6 results in the set up of in-
form requests. Specifically, SNMP inform requests are generated from the local unit
to its primary superior ROCs when the mission operational status rises to the c-3
state or higher, or falls to the c-1 state. In processing the inform policy rules, the
procedure Mdp_InmSnmpSession populates the inmAlarmTable, inmEventTable, and
inmEventNotifyTable which are members of the INM notification group in the AA
MIB. These tables were adapted from the ideas presented in RFC1451 (reference 14),
and hold the configuration information that controls the generation of inform requests.
Note that rows in these MIB tables can be created and deleted by managers with ap-
propriate access rights. The configuration set up by the MDP can, therefore, be
modified on-the-fly by managers with proper authority.

14

In this example, it is seen that the communications plan identifies the hierarchy of
INMs, the type of each INM, and their address. The policy rules dictate how, what,
and when these INMs will communicate. By changing these policies, the manner in
which INMs communicate can be modified.

2.2.2.3 MLM Configuration

As described in section 2.1, an MLM performs periodic polling cf network elements,
filtering the resulting responses from network elements, and filtering unrequested mes-
sages (i.e., SNMP traps) from network elements. Using the procedure described in
section 2.2.2.1, and detailed for the case of SNMP INM configuration in section 2.2.2.2,
a set of expanded policy rules specific to the configuration of the current mission are
passed to the procedure Mdp Mlm. For example, the communications plan might in-
dicate the location of a channel access protocol (CAP) router interface unit (CRIU)
and the location and number of CAPs connected to it. A policy rule template, for
example:

c:criu-monitoring p:cap-monitoring \
POLL_CONFIG SNMP:c:1801:aicsInm:1.3.6.1.4.1.1738.2.300.3.1.1.8.p ADD:40:5

might be included in the MLM policy rules file which, when expanded, results in a
policy rule sent to the Mdp_M1m to configure the Mlm to poll the CRIU for the number
of source quenches each of the CAPs have sent, and if more than a certain amount
have been sent in a certain period of time, to then forward a trap to the local INM.

There are many different choices available to implement the MLM function. The
MLM capability could be built directly into the AMA, or a variety of COTS products
of varying of capabilities could be employed. In the current prototype Computer
Associates’ Domain Manager (reference 15), a COTS MLM program, is used to ful-
fill the polling and filtering requirement. The procedure Mdp Mlm checks the value
unitInmModuleName corresponding to the MLM, and calls a routine that converts the
policy statements (internal format), into the configuration in the format specific to
the MLM in use. This routine then (re)starts the MLM with the new configuration
information.

This design is shown in figure 2. The MDP is effectively split into two parts.
The front-end determines the desired MLM configuration as dictated by merging the
communications plan (as stored in the AA MIB cache) and the policy rule templates,
and represent this resulting configuration in an internal format (i.e., the expanded
policy rules). The back-end converts the internal format into configuration files for
the specific MLM in use and (re)starts the MLM. This design is such that by changing
only the output side of the MDP, the choice of COTS mid-level managers can be
changed.

15

(AA J POLICY INFO

* Policy info relevant to MLM

* Mission/complan and
fault and performance management

unit config info
functions
4 N

MDP

(
Configuration and policy
(_interpreter

MLM configuration in
internal format

format to specific format
.
_ W,

(.
Conversion of internal

Configuration Information
(polling schedules, event specs.)

()

Figure 2. Diagram of the MDP for the MLM.

2.2.2.4 Operational Status Dependency Configuration

In the previous section, the monitoring of local assets and resulting generation of
traps by the MLM to the local INM was discussed. In addition, in section 2.2.2.2, the
configuration enabling fault-driven inform requests from subordinate INMs to superior
INMs was discussed. In between these two processes, the local INM needs to process
the traps it receives from the MLM to determine what inform requests, if any, should
be sent to superiors. Much like the MLM is programmed to correlate and filter the
information it receives so as to present the local INM with more useful information, the
INM must also correlate and filter information it receives to determine what messages
should be sent to superior INMs.

MLMs use a variety of methods to enable their correlation and filtering capab-
ility. In the prototype, the INM method of correlation and filtering is incorpor-
ated into the AA MIB, thereby providing a concise definition of the correlation and
filtering process, and standards-based access to this information. The use of the
inmAlarmTable, inmEventTable, and inmEventNotifyTable to facilitate generation
of inform requests from subordinate to superior INMs was discussed in section 2.2.2.2.
To facilitate correlation of aggregate operational status information, indexing of ob-

16

jects in the MIB is such that a hierarchy of operational status objects exists. The
inmOpStatusDependencyTable is provided to define the necessary details of the de-
pendence of operational status objects. Once again, these details are initialized
by the MDP using steps a through f as described in section 2.2.2.1. The rows of
inmOpStatusDependencyTable can be created and deleted; therefore, the configura-
tion set up by the MDP can be modified on the fly by managers with proper access
rights.

As an example, these policy rules might create a setup where:

o The operational status of the mission depends on some weighted average
of the operational statuses of all the communications services utilized for
the mission;

e Each communications service depends on some weighted average of op-
erational statuses of the transmission resources they utilize;

e Each transmission resource depends on some weighted average of the
operational statuses of the equipment which makes up the resource; etc.

As a result, when, for instance, the MLM detects that a CAP has sent too many
source quenches, the trap sent to the AMA will cause the operational status of the
CAP to change. This will cause the AMA to redetermine the operational status of
the transmission resource that uses that CAP, the communications services that use
that transmission resource, etc., all the way up to the overall operational status of the
mission. The policy rules would likely be set up such that only when the higher level
aggregate operational status objects change to more critical levels will inform requests
be sent to superior INMs (see section 2.2.2.2).

A possible deficiency of the current implementation is that the algorithm used for
computing the value of the aggregate operational status variables does not incorporate
temporal memory, but instead always calculates a (policy-governed) weighted aver-
age based on the instantaneous value of other statuses. Experience has shown that
introducing memory into the algorithm by the use of “state machines” is a useful tool
in assessing the status of a network. As a result, this is a common feature in avail-
able MLMs (e.g., Domain Manager), and can, therefore, be utilized by the INM for
processing management information at the MLM level. As the AMA only computes
aggregate status information, it is not clear that state machines would be as useful
as they are when applied directly to network objects. For this reason, and that it
would entail adding complexity to the AMA, this functionality was not included in
the current prototype.

17

2.2.2.5 RMON Configuration

The last configuration item supported by the current version of the INM prototype
is RMON. An RMON probe listens promiscuously on a LAN, and can be programmed
to collect information about the packets that are transmitted. There are two RMON
standards, the RMON-1 (reference 16) standard, and RMON-2 (reference 17), which
is just now reaching the culmination of the standardization process. RMON-1 in-
cludes the capability to access link layer (i.e., ethernet layer) statistics quickly. It
also includes the capability to filter and selectively capture packets, thereby enabling
analysis of higher network layers in a less convenient manner. The RMON-2 standard
incorporates quick access to statistics all the way up to the application layer. Current
COTS RMON probes support RMON-1, and include support for features of RMON-2,
but not necessarily in a way that conforms to the RMON-2 standard. It is anticipated
that COTS RMON-2 conformant probes will be available within the next year.

In the context of the Advanced Digical Network System (ADNS), monitoring net-
work layer statistics (as opposed to link layer statistics) would be a useful INM capab-
ility because it allows one to see beyond a router. In the absence of COTS RMON-2
products, an agent supporting parts of the RMON-2 MIB was developed under the
AICS program. This RMON-2 “simulation” agent configures an RMON-1 probe, re-
trieves packets previously captured by the RMON-1 probe, analyzes the packets, and
populates the RMON-2 MIB tables holding information detailing the top bandwidth
network layer conversations. A list of the top bandwidth network conversations can
then be retrieved via SNMP in the same manner as if the RMON-2 agent were actually

an RMON-2 probe.

In the AMA prototype, the procedure Config Check examines the
unitInmModuleTable, and if the local unit has an RMON-2 “simulation” agent (and
an RMON-1 probe), the agent is started. In addition, a menu item is added to the
AMA Display to view the information made available by this agent.

When COTS RMON-2 probes become available, the RMON-2 “simulation” agent
will become obsolete for INMs equipped an RMON-2 probe. For the AMA to support
the RMON-2 probes, a new stanza would be added to the procedure Config Check
(to check if the local unit has an RMON-2 probe), and an additional procedure called
from the MDP would be written. Because the RMON-2 “simulation” agent has the
same interface as an actual RMON-2 probe, the additional MDP procedure would be

a simple addition.
2.2.3 AMA Display

Figure 3 shows an example of the current AMA prototype display. Included in
the upper right of the figure is a window belonging to OV-NNM showing symbols
representing various devices on a particular LAN. On the left hand side of this window
1s an oval symbol representing the INM and indicating its top level status. In the upper

18

right of the OV-NNM window is the menu item used to launch the AMA. The other
windows in the figure belong to the AMA. The current display is not refined, but
demonstrates the basic function of the AMA display. In the upper right of the AMA’s
main window is a symbol for the overall mission operational status labelled “OP-
PLAN STATUS.” This status is tracked by the symbol representing the INM on the
left of the OV-NNM window. Below the symbol for the mission operational status
are symbols for the aggregate operational statuses of the applications utilized by the
current mission. By clicking on these symbols, the aggregate statuses of the network
elements on which the user applications depend are revealed. By continuing to click
on the aggregate operational status symbols as they appear, the operational status of
more detailed aspects of the network is revealed. The AMA presents information in
the context of the unit’s current mission, whereas the SNMP management platform
program presents a network topology that may appear abstract to all but highly
trained operators. As rudimentary as figure 3 is, it demonstrates the difference in the
type of information that is displayed by an SNMP management platform program (in
this case OV-NNM) and the AMA.

2.3 Network Standards and COTS Product Integration

It is the current consensus that using accepted network standards and taking ad-
vantage of COTS products in the design of Navy systems is a cost-effective strategy.
There are several aspects of the INM prototype where this principal has been incor-
porated into the design:

e The design of the prototype INM is such that when COTS network
management products fulfill INM requirements, they can be integrated into
the INM. As the technical problems of integration of particular products
have to be solved on a case-by-case basis, the prototype INM framework
was made flexible. In section 2.2, integration of an SNMP Management
Platform Program, MLM, and RMON probe into the prototype INM was
demonstrated.

e The requirements of one unit’s INM might be different than those of an-
other unit’s, therefore, the AMA was designed for flexibility in the choice
of the COTS products that are utilized. With the current rapid evolution
of COTS network management software products and protocols, this flex-
ibility is particularly important as it reduces the need for commitment to
a particular vendor’s products and methodology, and the constraints this
commitment entails.

e The AMA was developed using an off-the-shelf toolkit (in this case, a
public domain toolkit, not a commercial one). The toolkit is based on
a widely known, powerful, well documented, portable scripting language
(Tcl/Tk) (as opposed to unique, limited, little-known languages that some
COTS toolkits employ). Although this is not an endorsement of the partic-

19

asouleIp 03
HAI0M3AaW ayl

—...m.w.m $Z'661 .

Y

la

Figure 3. Example of the INM disp

ular toolkit used, it is meant to emphasize that when a toolkit is required,
using a toolkit with these qualities is advantageous not only for initial
development, but for flexibility, serviceability, and extensibility over the
course of the system’s life cycle.

¢ In the prototype, some of the AMA’s functionality is incorporated into
the AA MIB, thereby providing a definition of these functionalities using
accepted network management standards. It is envisioned that in future
versions of the AMA, its functionality will be more thoroughly defined in
the AA MIB.

In this report, the only COTS network management programs discussed are the
SNMP management platform program and the MLM. There are a wide variety of
other COTS programs serving a range of functions— physical network management,
trouble ticketing, and the gamut of management programs for specialized network
devices, to name a few. Presently, the networks that are the primary target of the
AICS program are not mature enough to make a discussion of these more specialized
types of management programs worthwhile. The integration of the COTS SNMP
management platform program and MLM functionalities into the INM fulfills INM
requirements that will be common to many units. The next two sections discuss these
two INM components.

2.3.1 COTS SNMP Management Platform Program Integration

Current typical COTS SNMP management platform programs provide a variety of
required services, including a display showing the topology and status of the network,
menu-driven methods to customize the appearance of the network topology display,
automatic monitoring of the network using ICMP packets, an SNMP protocol engine,
network auto-discovery, a general purpose MIB browser, customizable menu items for
retrieving specific MIB objects, an SNMP trap daemon and methods to bind actions
to received traps, and an API for third party program development. Differentiating
between different COTS SNMP management platform programs is problematic. The
division between what functionality is built directly into the SNMP management plat-
form program and what is left for third party development is up to the discretion of
each vendor. Because these products are relatively new, the functionality provided in
each vendor’s product and what third party add-ons are available can change consid-
erably from year to year. In fact, the networks that these programs are designed to
manage are also quickly evolving (e.g., the emergence of virtual LANs); therefore, one
- might expect that the COTS SNMP management platform of today will bear only a
slight resemblance to ones several years from now. The INM prototype described in
this document does not make choices between these products, but instead emphas-
izes that the design should be committed to accepted network standards and remain
flexible with respect to use of specific products whenever possible.

It should be emphasized that not all units will require the a fully functional COTS
21

SNMP network manager platform program. For instance, those units that have few
network assets will not need such a program. In addition, those units that do not
have a knowledgeable network technician would also not be able to make use of such a
program. The default topology map as displayed after an auto-discovery process will
only have meaning to a skilled operator. Even a customized display, pre-configured
from knowledge of the mission communications plan, may not result in a display
useful to the available personnel. If the configuration of the SNMP network manager
platform program needs to be changed, the operator would have to understand both the
underlying network technology and be skilled at using the particular SNMP network
manager platform program graphical user interface (GUI). It is likely that such a level
of expertise would not be available on many units.

For those units which require a COTS SNMP network manager platform program,
a choice between the various ones that are available will have to be made. In the
INM prototype, two different SNMP network manager platforms were employed, a
commercial one, OV-NNM, and a public domain one, Tkined (part of the Scotty
package). Because of the loose integration level between the SNMP network manager
platform program and other INM components, it was relatively easy to use SNMP
network manager platform programs interchangeably. This flexibility is, of course,
lost when INM modules are more closely integrated with the SNMP network manager
platform program. For instance, if an INM module uses the the SNMP network
manager platform program API to utilize its protocol engine or access its topology
data base, a commitment to the particular SNMP network manager platform program

is made.

Besides HP OV-NNM, there are several other notable COTS SNMP network man-
ager platform products available. Cabletron Systems Inc.’s Spectrum (reference 18)
is probably the most innovative of the SNMP network manager platforms. Spectrum
uses a technique wherein a model can be created for network objects that creates
relationships between network objects. In essence, this methodology elegantly incor-
porates correlation and filtering functionalities into Spectrum, functions which in this
document have been associated with an MLM, and which are handled by third party
add-ons in most other SNMP network manager platforms. Spectrum uses a pure
client-server distributed architecture, where the network managment displays are cli-
ents that connect to servers where the network management related databases reside
and where network management functions are performed. Although more capabilities
may be built into Spectrum than other SNMP network manager platforms, Spectrum’s
third party support is not as good as, for instance, OV-NNM. If third party support
is an indication of acceptability, then OV-NNM might be considered the benchmark
of SNMP network manager platforms. Both Sun Microsystems Inc. (Solstice SunNet
Manager) (reference 19) and IBM (NetView) (reference 20) have product offerings
that provide functionality simliar to OV-NNM. As stated above, these products are
evolving at such a pace that, in the context of this report, more detailed comparisons
between them would be of limited value.

22

2.3.2 COTS MLM Integration

The functionality of an MLM will likely be required by all LOCs. There is a variety
of products and strategies that can be used to provide the functionality required of
a particular unit’s MLM. As discussed in section 2.2.2.3, Domain Manager was used
in the INM prototype. Domain Manager was an appropriate choice for the prototype
because monitoring of only a few network devices was required. Whether or not
Domain Manager, or a product of similar capabilities, would be appropriate for a
fieldable INM would depend on the requirements of the particular unit. The qualities
that distinguish Domain Manager are as follows: it is low cost; it is designed to
monitor a relatively small number of network devices; it is a stand-alone product in
that it is not tied to any COTS network management platform; it is configurable via
flat files; it runs as a set of background processes; and it provides basic monitoring
and filtering capabilities.

For units that have larger networks, a program such as Seagate’s Nerve Center
might be appropriate. Nerve Center is an expensive, large program requiring signific-
ant computing resources and is meant to manage a relatively large number of network
devices. It uses the methodology of properties and property groups discussed in sec-
tion 2.2.2.1 to enable easier configuration of large networks. Nerve Center is closely
integrated with OV-NNM. Although future versions may be developed that can be
integrated with other COTS network manager platforms, presently using Nerve Cen-
ter is a commitment to using OV-NNM. Nerve Center has a relatively elaborate GUI
for configuration, although this GUI creates flat files that fully describe the config-
uration. Configuration of Nerve Center in accordance to the communications plan
and policy rules could, therefore, be implemented in a way similar to that which was
done with Domain Manager in the current INM prototype. Nerve Center can also be
run as a stand-alone program (i.e., without OV-NNM) in an unattended mode, and
the Nerve Center nodes can be arranged in a hierarchy. (When run as a stand-alone
program, it is required that Nerve Center is running in the OV-NNM overlay con-
figuration somewhere else on the network). Nerve Center and similar products are
typically designed to operate in an interconnected ethernet LAN environment, not an
internet of networks separated by low-bandwidth RF links. At times (e.g., startup)
the various Nerve Center nodes in the management hierarchy may pass a significant
amount of information to each other; therefore, for the Navy’s application, a detailed
understanding of the programs operation would be required to avoid saturation of RF
links with network management information.

Another notable MLM is made by SNMP Research, Inc (reference 21). Through
the use of set requests containing scripts, the SNMP Research, Inc. MLM is configur-
able via SNMP. The SNMP Research, Inc. MLM runs purely as background processes
(i.e., in an unattented mode). In the framework of the AMA prototype, the back-end
of the MDP could send the required SNMP requests to the (local or remote) MLM.
For cases where a unit does not have an AMA, this is a particularly desirable feature

23

as remote configuration over the RF link would be done using SNMP. In addtion,
SNMP Research Inc. products are some of the few available that currently support
secure SNMP communications.

24

3. SUMMARY AND CONCLUSION

This report documents the INM prototype developement and integration effort,
part of the FY96 AICS program. The ultimate vision for AICS is a highly automated
network management system where its functions are implemented using standards-
based management protocols and may be carried out in a virtually unattended mode.
The prototype INM gives a preview of this ultimate vision and starts AICS network
management development in a direction that can evolve with new technology.

The AICS architecture, as descibed in the NMA and SSS, describes a hierarchy
of INMs, where the INMs at the lowest level of the hierarchy (LOCs) are responsible
for the communications/network assets under their purview. The AICS architecture
is primarily targeted for an environment where INMs are commonly separated from
other INMs by RF links. The main INM prototype development work was the AMA, a
network management application that, within the framework of the AICS architecture,
is meant to provide several Navy-specific functions and facilitate integration of other
(COTS) network management programs into the INM. Much of the AMA’s functional-
ity is described through the AA MIB, thereby providing a standards-based definition
of this functionality. If future versions of the AA MIB become more complete and ro-
bust, the AA MIB could serve to define the AMA interface concisely, possibly enabling
independent development of inter-operable AMAs.

The communications plan, cast in the form of a set of MIB objects, and a set of
policy rules applicable to each of the INM configuration management tasks are the
inputs to the AMA. At the initiation of a new mission, the communications plan is
loaded, the configurations tasks are performed, and monitoring of the network and
reporting of faults and status begins, all in accordance with applicable policy rules.

In the current prototype, four configuration tasks are performed by the INM,
although, as was discussed in section 2.2, the design is extensible so that other config-
uration tasks, and the policy rules associated with them, can be added. For instance,
if a specialized management application that controls Navy legacy RF gear (i.e., the
Communications Automation Manager') is incorporated into the INM, then a config-
uration item and associated policy information for this application would be added
to the AMA. The result would be that the AMA would send to the Communications
Automation Manager the information (based on the communications plan and policy
rules) the Communications Automation Manager requires to perform its tasks.

Because units with different network assets and different requirements will have
INMs, the prototype design is such that all INMs need not be alike. The previous
sections described several modules that might be components of an INM. A unit’s
network environment, required tasks, and available operators would determine its
INM configuration. For example, one unit may require an INM with a COTS SNMP
management platform, while others may not, while one INM might use one type of
mid-level manager, and another INM a different one.

25

The prototype INM and the ideas it demonstrates are clearly aimed at a next
generation network management system. If one has an operational network that lacks
proper network management tools, and if one is interested in implementing an imme-
diate solution, then many of the ideas presented in this document would be of limited
value. The strategy one would take in such a situation would hardly begin to touch
upon such issues as automated management based on Navy communications plans
and policy rules, as is addressed in the INM prototype.

The INM prototype is by no means a finished product, but is meant to present
some useful ideas in a working prototype and provide a good starting point for future
development. The following are some of the specific topics of future work:

e The design of the prototype depends both on machine-readable commu-
nication plans formatted for use by the INM, and a MIB capable of holding
the essence of said communication plans. The generation of machine-
readable communications plans is beyond the scope of the FY96 AICS
program, though once these machine readable communication plans are
available, they would have to be formated for use by the INM, and nec-
cessary modifications to the AA MIB would have to be made.

e The prototype uses SNMPv2-USEC authentication for INM to INM com-
munications, but the USEC authentication keys are presently handled in
a perfunctory manner. As with any system that uses encryption, a care-
fully thought out procedure is required for distribution and management
of encryption keys.

e The prototype does not provide a user friendly interface for writing or
modifying the policy data base files. Such an interface would be necessary
if operators in the field are allowed access to the policy data base files.

e While, the current AMA display served its intended purpose for the
prototype, it lacks functionality necessary for a fieldable product. Neces-
sary additions include an interface specially designed for browsing the AA
MIBs of the local and subordinate units. More general changes to the
AMA display might also be considered. For instance, due to the pervas-
iveness of Hypertext Markup Language (HTML) viewers (used by World
Wide Web (WWW) clients), the development of a Hypertext Transport
Protocol (HTTP) server as a means of providing AMA information to op-
erators via WWW clients has important advantages. By utilizing WWW
clients as an interface to access AMA information, the need for develop-
ment of a custom GUI, and the need for operators to learn how to use a
custom GUI, are eliminated. Such HTTP servers would have to be de-
signed such that HTTP is used only within a local unit, and SNMP is
used over low-bandwidth links.

o In section 2.3 it was stated that the technical problems of COTS product
26

integration would be solved on a case-by-case basis. As there is little
means to control the type of interfaces and configuration methods used by
COTS products, let alone their compatibility with each other, the issue of
integration will persist. Development of generalized ways of handling the
integration problem is an area of interest in the commercial community.
Exploiting new integration methods will continue to be an area of interest
for Navy network management systems.

The networks for which the AICS effort is intended are only now beginning to be
fielded. As a result, there has been little opportunity to study the problems that occur
in the operational environment. Typically, elegant network management solutions
result from observations by trained technicians of the problems that occur during
operation of specific networks, followed by iterative applications of more satisfying
solutions. To reach its fruition, an advanced network management system such as
the one outlined in the NMA and SSS and prototyped in this document will require
implementation in a testbed simlar to the targeted network environment, followed by
an incremental integration into the operational network.

27

10.

11.

12.

13.

4. REFERENCES

MITRE Corporation. “Automated Integrated Communications System Network
Management Architecture,” and “Automated Integrated Communications Sys- -
tem Network Management System/Segment Specifications,” Prepared for Naval
Command, Control and Ocean Surveillance Center RDT&E Division, Code 82,
San Diego, CA 92152-50001.

Available via ftp (see directory ftp://fury.nosc.mil/pub/AICS).

K. McCloghrie. 1996. “An Administrative Structure for SNMPv2,” RFC1909.
G. Waters. 1996. “User-Based Security Model for SNMPv2,” RFC1910.

Hewlett Packard Corporation, Cupertino, CA. Information available from the
following URL: http://www.hp.com:80/nsmd/ov/main.html

J.K. Ousterhout. 1994. Tcl and the Tk Toolkit, Addison-Wesley Publishing Co.,
Boston, MA.

Jirgen Schonwalder. Scotty - Tcl Extensions for Network Management Applic-
ations. University of Twente, Postbus 217, 7500 AE Enschede, Netherlands.
Information available from the following URL:
http://wwwsnmp.cs.utwente.nl/ schoenw/scotty/

LN., Krishnan and S.G. Bradley. 1994. “AN/SSQ-33(V)3 Control and Man-
agement Segment Information Reference Model (IRM),” Document number WN
94W0000151, The MITRE Corporation, McLean, VA.

J.D. Day and H. Zimmerman. 1983. “OSI Reference Model,” Proceedings of
the IEEE, vol. 71, pp. 1334-1340.

Complete AICS Management Application code is available from authors of this
report upon request.

L. Lewis. 1996. “Implementing Policy in Enterprise Networks,” IEEE Commu-
nications Magazine (Jan.), pp. 50-55.

M. Sloman. 1994. “Policy Driven Management for Distributed Systems,”
Journal of Network and Systems Management, vol. 2, no. 4.

M. Sloman, J. Magee, K. Twidle, and J. Kramer. 1993. “An Architecture
for Managing Distributed Systems,” Proceedings of Fourth IEEE Workshop on
Future Trends of Distributed Computing Systems, pp. 40-46.

Seagate Enterprise Management Software, Cupertino, CA. Information available
from the following URL:
http://www.sems.com/Products/West /nervecenter/Nervecenter.html

29

14.

15.

16.

17.

18.

19.

20.

21.

J. Case, K. McCloghrie, M. Rose, S. Waldbusser. 1993. “Manager-to-Manager
Management Information Base,” RFC1451.

Computer Associates, Inc., One Computer Associates Plaza, Islandia, NY 11788-
7000.

S. Waldbusser. 1995. “Remote Network Monitoring Management Information
Base,” RFC1757.

S. Waldbusser. 1996. “Remote Network Monitoring Management Information
Base,” working draft IETF Internet Draft draft-ietf-rmonmib-rmonmib-03.txt.

Cabletron Systems, Inc., 36 Industrial Way, Rochester, NH 03867. Information
available from the following URL: http://www.cabletron.com/spectrum

Sun Microsystems, Inc., 2550 Garcia Ave., Mtn. View, CA 94043-1100. In-
formation available from the following URL: http://www.sun.com/solstice/em-
products/network/ent.man.html

IBM Corporation, Research Triangle Park, NC 27709. Information available
from the following URL: http://networking.raleigh.ibm.com/netalpha.html.

SNMP Research International, Inc., 3001 Kimberlin Heights Road, Knoxville,
TN 37920-9716. Information available from the following URL:
http://www.snmp.com/

30

APPENDIX A: AICS MANAGEMENT APPLICATION AGENT MIB

AICS-Agent-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
Integer32, Counter32, snmpModules
FROM SNMPv2-SMI
DisplayString, InstancePointer, RowStatus, TimeStamp
FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP
FROM SNMPv2-CONF
nrad, code827
FROM NRaD-MIB;

== skekseskokokakokokakok R kR ook ok sk ook o ok sk sk ok ok ok sk o sk ko ok ok ok ki ok o ok skok sk ok sk ok o ok ok sk ok o ok ok
aics MODULE-IDENTITY
LAST-UPDATED "9611180000Z"
ORGANIZATION "NRaD, Code 827"
CONTACT-INFO
" Everett W. Jacobs

NCCOSC RDTZE DIV

Code D364

49590 Lassing Rd.

San Diego, CA 92152-6171

Tel: (619) 553-1614

E-mail: jacobs@nosc.mil"
DESCRIPTION

"AICS Management Application Agent MIB module.”
::= { code827 2 }

- 3 ke 3 ok o ok ok ok o 3 3 ok 3k 3k 3k 3 ok e ok ok 3k ok ok 3 e 3 sk e ke e o Ak ok ke e ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok sk ok ke sk ok 3 ok ko ok ok ok sk k

- This is an experimental MIB used as the basis of the

- AICS Management Application. See NCCOSC RDT&E Div

- Technical Report XXXX, "AICS Integrated Network Manager
- Prototype Documentation" for general information about
- the AICS Management Application.

inm OBJECT IDENTIFIER ::= {aics 1}
mission OBJECT IDENTIFIER ::= {inm 1}
unit OBJECT IDENTIFIER ::= {inm 2}
inmNotification OBJECT IDENTIFIER ::= {inm 3}

31

missionDef OBJECT IDENTIFIER ::= {mission 1}

missionCommPlan OBJECT IDENTIFIER ::

{mission 2}

missionSec OBJECT IDENTIFIER ::= {mission 3}
missionConfig OBJECT IDENTIFIER ::= {mission 4}
unitDef OBJECT IDENTIFIER ::= {unit 1}
unitNet OBJECT IDENTIFIER ::= {unit 2}
unitSec OBJECT IDENTIFIER ::= {unit 3}
unitOrg OBJECT IDENTIFIER ::= {unit 4}
unitSupport OBJECT IDENTIFIER ::= {unit 5}
-- The Mission Definition Group (missionDef)

A collection of objects which provide a high level
description of the current mission that the unit

-- is on.

missionId OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A integer which uniquely identifies the mission. Encoded
in this integer is the identification of which commPlan
is to be loaded from the commPlan database."

::= { missionDef 1 }

missionDescription OBJECT-TYPE

SYNTAX DisplayString

MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A description of the mission.™
::= { missionDef 2 }

missionBeginTime OBJECT-TYPE

SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION)
"The time the mission begins. This time will be
with the format YYYY:MM:DD:HH:MM:SS, where YYYY
is the year, MM is the month, DD is the day, HH
is the hour, MM is the minute, and SS is the
second. In next version this should be changed
to UTC Time format."

::= { missionDef 3 }

missionEndTime OBJECT-TYPE

32

SYNTAX DisplayString

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The time the mission ends. This time will be
with the format YYYY:MM:DD:HH:MM:SS, where YYYY
is the year, MM is the month, DD is the day, HH
is the hour, MM is the minute, and SS is the
second. In next version this should be changed
to UTC Time format."

::= { missionDef 4 }

nextMissionld OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"A integer which uniquely identifies the next mission.
Encoded in this integer is the identification of which
commPlan is to be loaded from the commPlan database.™

::= { missionDef 5 }

nextMissionBeginTime OBJECT-TYPE

SYNTAX DisplayString

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"The time the next mission is scheduled to begin.
This time will have format YYYY:MM:DD:HH:MM:SS,
where YYYY is the year, MM is the month, DD is the
day, HH is the hour, MM is the minute, and SS is
the second. In next version this should be changed
to UTC Time format."

::= { missionDef 6 }

nextMissionEndTime OBJECT-TYPE

SYNTAX DisplayString

MAX-ACCESS read-write

STATUS current

DESCRIPTION
"The time the next mission is scheduled to end.
This time will have format YYYY:MM:DD:HH:MM:SS,
where YYYY is the year, MM is the month, DD is the
day, HH is the hour, MM is the minute, and SS is
the second. In next version this should be changed
to UTC Time format."

::= { missionDef 7 }

missionOpStatus OBJECT-TYPE

SYNTAX INTEGER {
unknown(0), c-1(1), ¢-2(2), ¢c-3(3), c-4(4),

33

down(5), failed(6)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A integer which identifies the operational status of
the local unit’s network/comm systems which are
participating in the current mission. This status is
the highest level aggregate status for the unit. This
status will be indicated on superior INMs by the color
of the symbol for this INM."

::= { missionDef 8 }

missionAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
running(1), reconfigure(2)

}
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"A integer which identifies the administrative status of
the local unit’s network/comm systems which are
participating in the current mission. If
missionAdminStatus is set by a higher level INM from
running to reconfigure,
and if nextMissionBeginTime has been reached,
missionOpStatus will be changed to reconfiguring, and the
process to change to he next mission will commence.
After the reconfiguration procedure has finished,
missionAdminStatus will be changed to running, and
missionOpStatus will be changed from reconfiguring to
the appropriate value.”

::= { missionDef 9 }

supTable OBJECT-TYPE

SYNTAX SEQUENCE OF SupEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTICN
"A list that identifies and describes the
units that are superior to the local
unit."”

::= { missionDef 10 }

supEntry OBJECT-TYPE
SYNTAX SupEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIPTION
"A set of parameters to identify and describe
a unit that is superior to the local unit.”

INDEX { supIndex }

34

::= { supTable 1 }

SupEntry ::= SEQUENCE {
supIndex INTEGER,
supld Integer3z,
supType INTEGER,
supDescription DisplayString,
- supInmType INTEGER,
supInmIpAddress IpAddress,
supInmPort Integer32,
- supOpStatus INTEGER
}

supIndex OBJECT-TYPE

SYNTAX INTEGER (1..65535)

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"An index that uniquely identifies an entry in the
supTable. "

::= { supEntry 1 }

supld OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"An identification code that uniquely identifies
the superior unit."

::= { supEntry 2 }

supType OBJECT-TYPE
SYNTAX INTEGER {
carrier(1), destroyer(2), submarine(3),
battleship(4), flagship(5), cruiser(6),
navy-base(7)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A integer which identifies the superior unit type."
::= { supEntry 3 }

supDescription OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..127))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A comment describing the superior unit."
::= { supEntry 4 }

supIlnmType OBJECT-TYPE

35

SYNTAX INTEGER {
none(1), primary-roc(2), secondary-roc(3),
other-roc(4), primary-noc(5), secondary-noc(6),
other-noc(7)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"If applicable, an integer which identifies the superior
unit INM type."
::= { supEntry 5 }

supInmIpAddress OBJECT-TYPE

SYNTAX IpAddress

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"If applicable, the IP address of the INM on the
superior unit.”

::= { supEntry 6 }

supInmPort OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current

DESCRIPTION
"If applicable, the port to send communications to the INM

on the superior unit."”
::= { supEntry 7 }

supOpStatus 0OBJECT-TYPE
SYNTAX INTEGER {
unknown(0), c-1(1), c-2(2), ¢-3(3), c-4(4),
down(5), failed(6)

}
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"A integer which identifies the operational status of

the superior unit’s network/comm systems which are
participating in the current mission. This status is
the highest level aggregate status for the superior
unit. This status variable is not controlled by the
local unit, but is writable by the superior to provide a
means of pushing information down to a subordinate.”

::= { supEntry 8 }

-- End of supTable

36

subTable OBJECT-TYPE

SYNTAX SEQUENCE OF SubEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"A list that identifies and describes
the units that are subordinate to the
local unit."

::= { missionDef 11 }

subEntry OBJECT-TYPE

SYNTAX SubEntry

MAX-ACCESS not~accessible

STATUS current

DESCRIPTION
"A set of parameters to identify and describe
a unit that is subordinate to the local unit."”

INDEX { unitId, subIndex }

::= { subTable 1 }

SubEntry ::= SEQUENCE {

subIndex INTEGER,

subld Integer32,
subType INTEGER,
subDescription DisplayString,
subInmType INTEGER,
subInmIpAddress IpAddress,
subInmPort Integer32,
subOpStatus INTEGER,
subAdminStatus INTEGER

3

subIndex OBJECT-TYPE

SYNTAX INTEGER (1..65535)

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"An index that uniquely identifies an entry in the
subTable. "

::= { subEntry 1 }

subIld OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"An identification code that uniquely identifies
the subordinate unit."

::= { subEntry 2 }

subType OBJECT-TYPE
SYNTAX INTEGER {

37

carrier(1), destroyer(2), submarine(3),
battleship(4), flagship(5), cruiser(6),
navy-base(7)

3
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“A integer which identifies the subordinate unit type.
Among other things, the value of subType will
indicated if the unit has an INM."

::= { subEntry 3 } -

subDescription OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..127))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A comment describing this sub entry."
::= { subEntry 4 }

subInmType OBJECT-TYPE
SYNTAX INTEGER {
none(1), primary-loc(2), other-loc(3),
primary-roc(4), other-roc(5)

3
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A integer which identifies the subordinate unit INY type.”
::= { subEntry 5 }

subInmIpAddress OBJECT-TYPE

SYNTAX IpAddress

MAX-ACCESS read-only

STATUS current

DESCRIPTION
“The IP address of the INM on the subordinate unit.
If this subordinate unit does not have an INM, the
value of this variable is set to 000.000.000.000 ."

::= { subEntry 6 }

subInmPort OBJECT-TYPE .
SYNTAX Integer32
MAX~ACCESS read-only
STATUS current .
DESCRIPTION
"If applicable, the port to send communications to the INM
on the subordinate unit.”
::= { subEntry 7 }

subOpStatus OBJECT-TYPE

38

SYNTAX INTEGER {
unknown(0), ¢c-1(1), c-2(2), c-3(3), c-4(4),
down(5), failed(6)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A integer which identifies the operational status of
the subordinate unit’s network/comm systems which are
participating in the current mission. This status is
the highest level aggregate status for the subordinate
unit. This status will be indicated on the display of
the superior INM by the color of a symbol for the
subordinate.™

::= { subEntry 8 }

subAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
running(1), reconfigure(2)

}
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"A integer which identifies the administrative status of
the subordinate unit’s network/comm systems which are
participating in the current mission."

::= { subEntry 9 }

-- End of subTable
-~ End of missionDef group
-- The Mission Communication Plan Group (missionCommPlan)

-- A collection of objects which describe the operations plan

-- and how units on a mission are to

-— communicate. There are two tables in the group, the

-- user application table (userAppTable) and the

-- communication service table (commServiceTable). The

-- user application table is for identifying the different

~- user applications employed by the urit for the mission.

-- The user applications

—— are in general, associated with layer 7 of the 0SI network

-- model. The communication service table is to identify the

-— communication services that each user application requires,
—- and to identify the transmission

—-- resources each user—application/communication~service pair

—- can utilize. In the context of shipboard units, transmission
-— resources are the particular RF resource. A user application
-- can require more than

-- one communication service. A user-application/communication-
-— service can utilize more than one transmission resource,

39

although generally a primary communication resource is identified.
In general, the communication service indicates the quality

of service required by the application. In reference to the
0SI seven layer model, layers 3 and 4 are typically most relevant
to communication services. The transmission resources

in general refer to the RF communication equipment, and are
therefore more closely associated with layers 1 and 2 of the
0SI model.

On a LOC, all rows in these tables will be indexed by the local
unit. On a higher level OC, there will be rows in these table
for subordinate units.

userAppTable OBJECT-TYPE

SYNTAX SEQUENCE OF UserAppEntry

MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"A list that identifies and describes the
user applications that are utilized on the
current mission. The user applications are
in general associated with the application
layer (layer 7) of the 0SI network model."”

::= { missionCommPlan 1 }

userAppEntry OBJECT-TYPE

SYNTAX UserAppEntry
MAX-ACCESS not—-accessible
STATUS current
DESCRIPTION

"“A set of parameters to identify and describe
a user application."

INDEX { unitId, userAppIndex }

::= { userAppTable 1 }

UserAppEntry ::= SEQUENCE {
userAppIndex INTEGER,
userAppType INTEGER,
userAppDescription DisplayString,

userAppHostIpAddress IpAddress,
userAppOpStatusWeight Integer32,
userAppOpStatus INTEGER,
userAppAdminStatus INTEGER

userAppIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“An index that uniquely identifies an entry in

40

userAppTable for a given unitId. "
::= { userAppEntry 1 }

userAppType OBJECT-TYPE
SYNTAX INTEGER {
aps(1), andvt-stu-III(2), cds(3), ctaps(4),
dms-amhs(5), gces(6), groupware(7), jdiss(8),
jmcis(9), navmacsII(10), ntess(11), pixs(12),
saces(13), s-tred(14), tacintelII(i5),
tamps(16), tess(17), tty(18), vvfd-vtixs(19)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An integer that identifies the userApplication."
::= { userAppEntry 2 }

userAppDescription OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A description of the user application."
::= { userAppEntry 3 }

userAppHostIpAddress OBJECT-TYPE

SYNTAX IpAddress

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"If applicable, the IP address of the host on which
the user application is run."

::= { userAppEntry 4}

userAppOpStatusWeight OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"Number of userAppOpStatus instances used to calculate
the userAppOpStatus instance in this row. On
a loc, this will be 1. On a roc, it would be the
number of subordinates that use this userApp."

::= { userAppEntry 5 }

userAppOpStatus OBJECT-TYPE
SYNTAX INTEGER {
unknown(0), c-1(1), ¢-2(2), ¢-3(3), c-4(4),
down(5), failed(6)
}
MAX-ACCESS read-only

41

STATUS current
DESCRIPTION
"A integer which identifies the operational status of

the user application. This is an aggregate status of
only the application program itself and the host it
resides on, and not the communications resources it
utilizes. Failed is an indication that
the application requires more than standard procedures
to bring the application up."

::= { userAppEntry 6 1}

userAppAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
up(1), down(2)

}
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"A integer which identifies the administrative status
(i.e., the desired status) of the user application.
This object is read-write if the unit identified by
this row is the local unit, otherwise it is read-only.
If the unit identified by this row is not the local unit
then this object will be updated via status reports from
the unit specified by this row."
::= { userAppEntry 7 }

—- End of userAppTable

commServiceTable OBJECT-TYPE

SYNTAX SEQUENCE OF CommServiceEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
“A table that includes all the userApp/commService
pairs for specified units, and identifies which
transmission resources each
userApp/commService utilizes. The table is indexed
by userAppIndex, commServiceID, transResourceld
and unitId. Before creating an entry in this table,
the management application should first check that
a row in the userAppTable corresponding to userApplndex
and unitId, and a row in transResourceTable
corresponding to transResourceld and unitId exist.
If these rows do not exist, the agent should return an
error.

A userApp/commService

can utilize more than one transmission resource. This
is because an application may need to communicate with
locations that can’t be reached through the same

42

transmission resource. In addition, if one
transmission resource is not available, a secondary
one may be utilized. In practice, a router will

know that a userApp/commService can utilize more than
one transmission resource, and it will choose the
best one based on its routing protocol."

::= { missionCommPlan 2 }

commServiceEntry OBJECT-TYPE

SYNTAX CommServiceEntry

MAX~ACCESS not-accessible

STATUS current

DESCRIPTION
"A row that indicates the relationship between
userApps, commServices, and transResources.”

INDEX {transResourceld, unitId, userAppIndex, commServiceType }

::= { commServiceTable 1 }

CommServiceEntry ::= SEQUENCE {
commServiceType INTEGER,
commServicePriority INTEGER,
commServiceOpStatus INTEGER,
commServiceAdminStatus INTEGER

}

commServiceType OBJECT-TYPE
SYNTAX INTEGER {
packet—-data(1l), voice(2), multimedia(3)

3
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A communication service required by the application.
A user application can require more than one communication
service. Communication service is an indication of the
quality of service (and therefore often times the
transport and network layers) required to support the
user application. In reference to the 0OSI seven layer
network model, Communication service is therefore most
closely associated with layers 3 and 4. Currently
only three communication services are defined."

::= { commServiceEntry 1 }

commServicePriority OBJECT-TYPE
SYNTAX INTEGER A
primary(1), secondary(2), backup(3)

}
MAX-ACCESS read-create
STATUS current
DESCRIPTION

"Indicates if this is a primary transmission resource

43

for this user-application/communication-service. A
user-application/communication-service can have more
than one primary transmission resource because
communication to locations that are not comnnected by
the same transmission resource may be required."

::= { commServiceEntry 2 }

commServiceOpStatus O0BJECT-TYPE
SYNTAX INTEGER {
unknown(0), c-1(1), ¢c-2(2), ¢-3(3), c-4(4),
down(5), failed(6)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A integer which identifies the aggregate operational
status of the communication resources which are required
by the user application on the specified unit.

Failed is an indication that more than standard
procedures are require to bring the communication
resources up."

::= { commServiceEntry 3 }

commServiceAdminStatus OBJECT-TYPE

SYNTAX INTEGER {
up(1), down(2), createAndGo(4), createAndWait(5),

destroy(6)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION

"A integer which identifies the administrative status
(i.e., the desired status) of the communications
resources which are required by
the user application on the specified unit. A management
station creates a row in this table by first setting
the value of userAppResourceAdminStatus to createAndGo
or createdndWait, and then setting commServiceType and
primaryCommResource. If using createAndWait, the agent
would then set userAppResourceAdminStatus to down and
userAppResourceOpStatus to down. If using createAndGo,
the AMA would then attempt the necessary configuration
to bring the user application up. If successful,
userAppResourceAdminStatus and userAppResourceQpStatus
would be set to up. If unsuccessful, the agent will set
userAppResourceAdminStatus to up and
userAppResourceOpStatus to either down or failed depending
on the problem."

::= { commServiceEntry 4 }

44

—— End of commServiceTable

-~ End of mission Group
—-- The Unit Definition Group (unitDef)

—-= A collection of objects which provide a high level

—-- description of the unit associated with the AICS Agent. -

—-— Currently, these objects identify the unit, and the

-- configuration of the units INM. This group might be

-- expanded to include such information as geographic location,
-- and other objects which can be associated

-- with the unit as a whole.

unitId OBJECT-TYPE

SYNTAX Integer32

MAX~ACCESS read-only

STATUS current

DESCRIPTION
"A integer which uniquely identifies this (i.e., the local)
unit."

::= { unitDef 1 }

unitType OBJECT-TYPE
SYNTAX INTEGER {
carrier(1), destroyer(2), canoe(3),
raft(4), flagship(5), mothership(6),
pacific-fleet(8), navy(9)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An integer which identifies the unit type."
::= { unitDef 2 }

unitDescription OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A description of the unit."
::= { unitDef 3 }

unitInmType OBJECT-TYPE
SYNTAX INTEGER {
loc(1), roc(2), noc(3)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An integer that identifies the type of INM. Although

AMAs running in different modes (e.g., LOC, ROC, or
NOC mode) use an agent supporting the same MIB, the

AMA“s functions and display in these modes are quite

different. This object indicates the mode in which
the AMA is running."
::= { unitDef 4}

unitInmModuleTable OBJECT-TYPE
SYNTAX SEQUENCE OF UnitInmModuleEntry
MAX-ACCESS not—accessible
STATUS current
DESCRIPTION
"A list that identifies and describes
the software modules of the INM on this unit.”

::= { unitDef 5 }

unitInmModuleEntry OBJECT-TYPE
SYNTAX UnitInmModuleEntry
MAX-ACCESS not—accessible
STATUS current

DESCRIPTION
"A set of parameters to identify and describe

an INM software module."”
INDEX { unitId, unitInmModuleIndex }
::= { unitInmModuleTable 1 }

UnitInmModuleEntry ::= SEQUENCE {

unitInmModuleIndex INTEGER,
unitInmModuleType INTEGER,
unitInmModuleName DisplayString,
unitInmModuleVersion DisplayString,
unitInmModulePort Integer32,
unitInmModuleOpStatus INTEGER,
unitInmModuleAdminStatus INTEGER

}

unitInmModuleIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTICON

"“An index that uniquely identifies an entry in the
unitInm table. "
::= { unitInmModuleEntry 1 }

unitInmModuleType OBJECT-TYPE
SYNTAX INTEGER {
nm(1), ama(2), aa(3), mlm(4), mdp(5), cam(6)

}

46

MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An index that identifies the type of INM module.”

::= { unitInmModuleEntry 2 }

unitInmModuleName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..40))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The name of the INM module.™
::= { unitInmModuleEntry 3 }

unitInmModuleVersion CGBJECT-TYPE
SYNTAX DisplayString (SIZE (0..40))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The version of the INM module.’
::= { unitInmModuleEntry 4 }

unitInmModulePort OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current

DESCRIPTION
“The port number that would be used to communicate with

this program, for instance, the port an MLM is listening
to for SNMP requests. The object should have value
zero if there is no such port."

::= { unitInmModuleEntry 5 }

unitInmModuleOpStatus OBJECT-TYPE
SYNTAX INTEGER {
unknown(0), c-1(1), ¢-2(2), ¢-3(3), c-4(4),
down(5), failed(s)

}
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"A integer which identifies the operational status of
the INM module identified by this row."
::= { unitInmModuleEntry 6 }

unitInmModuleAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
locked (1), unlocked(2)

}
MAX-ACCESS read-write
STATUS current
DESCRIPTICON

47

-- End

"A integer which identifies the administrative status of
the INM module identified by this row."
::= { unitInmModuleEntry 7 }

End of unitInmModuleTable

unitDef group

Unit Network Group (unitNet)

A collection of objects that

describe the configuration of the communication/network
assets under the INM“s control. The layout of the unit network
group was influenced by the IRM presented

in MITRE document WN 94W00001i51. The tables in this group
describe a hierarchy made up of transmission resources,

unit equipment, unit equipment ports, etc.

In the IRM a rather general definition

is given for a '"network domain", where one type of network
domain could be a particular RF network. In this MIB,

a less general definition of "network domain" is used, and
therefore what would have been the networkDomainTable is
replace by the transResourceTable. In the terminology of the
IRM, the only allowed "network domains” are

the aggregate equimpment from the link and physical layers,
that take part in communication

using a particular RF network (or transmission

resource). An entry in the transmission resourse table on a
LOC will refer to the aggregate of all the equipment on the
local unit that is part of the transmission resource.

(e.g., all the equipment on a ship, from link and physical
layers, used for communication on a particular RF network).
On a LOC, the transResource table will typically only

include entries for the transmission resources on

the local unit, and possibly units which directly are connected
to the local unit via links identified in the link table.

On a LOC, the unit equipment and unit port

tables will probably include complete information for all the
local transmission resources in the transmission resource
table. On a ROC, typically there will »
be entries in the transmission resource table for each

unit that is subordinate to the ROC, and entries indexed for

to local unit which will hold aggregate status information

over all the ROCs subordinates. On a ROC the unit equipment,

port and link tables may only have entries for a small subset

of the units listed in its transmission resource table.

48

transResourceTable OBJECT-TYPE
SYNTAX SEQUENCE OF TransResourceEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The transmission resource table is a list of the
RF network domains which are (in part or in whole)

on or under control of this unit. An RF network domain

typically spans many units, with some subset of each
unit’s assets belonging to the RF network domain."
::= { unitNet 1 }

transResourceEntry OBJECT-TYPE

SYNTAX TransResourceEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"A set of parameters to identify and describe
a communication resource."

INDEX { transResourceld, unitId}

::= { transResourceTable 1 }

TransResourceEntry ::= SEQUENCE {

transResourceld Integer32,
transResourceType INTEGER,
transResourceDescription DisplayString,
transResourceCntrlOrg DisplayString,
transResource0pStatusWeight Integer32,
transResourceUpStatus INTEGER,

transResourceAdminStatus INTEGER

transResourceld OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An integer that identifies the transmission resource."

::= { transResourceEntry 1 }

transResourceType OBJECT-TYPE
SYNTAX INTEGER {
uhf(1), vhf(2), los(3), satcom(4),
ethernet(5)
3
MAX-ACCESS read-only
STATUS current
DESCRIPTION

49

"An index that identifies the type of transmission
resource."
::= { transResourceEntry 2 }

transResourceDescription OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
MAX-ACCESS read-only
STATUS current

DESCRIPTION
"A description of the transmission resource."

::= { transResourceEntry 3 }

transResourceCntrlOrg OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The organization that controls the transmission
resource."

::= { transResourceEntry 4 }

transResourceOpStatusWeight OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current

DESCRIPTION
"Number of transResourceOpStatus instances used to calculate

the transResourceOpStatus instance in this row.
On a LOC, this will be 1. On a ROC, it would be the
number of subordinates that use this transmission
resource."

::= { transResourceEntry 5 }

transResourceOpStatus OBJECT-TYPE
SYNTAX INTEGER {
unknown(0), c-1(1), c-2(2), c-3(3), c-4(4),
down(5), failed(8)

}
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"A integer which identifies the operational status of
the transmission resource. This variable is write-able by
a superior as a means of pushing information down
to a subordinate."
::= { transResourceEntry 6 }

transResourceAdminStatus OBJECT-TYPE

SYNTAX INTEGER {
locked(1), unlocked(2)

50

3

MAX-ACCESS read-write
STATUS current
DESCRIPTION

"A integer which identifies the administrative status of
the transmission resource."
::= { transResourceEntry 7 }

-~ End transResourceTable

unitEquipTable OBJECT-TYPE

SYNTAX

SEQUENCE OF UnitEquipEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"The network unit equipment table is a list of the
equipment that is part of a particular unit
and part of a particular transmission resource.
For example this might be a list of all equipment on
a particular ship used to participate in
communications on a particular RF network.

A corresponding row in transResourceTable will exist
for rows in this table."
::= { unitNet 2 }

unitEquipEntry OBJECT-TYPE

SYNTAX UnitEquipEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"A set of parameters to identify and describe
equipment."

INDEX { transResourceld, unitld, unitEquipIndex }

::= { unitEquipTable 1 }

UnitEquipEntry ::= SEQUENCE {

unitEquipIndex INTEGER,
unitEquipld DisplayString,
unitEquipType INTEGER,
unitEquipIpAddress IpAddress,
unitEquipOpStatus INTEGER,

unitEquipAdminStatus INTEGER

unitEquipIndex OBJECT-TYPE

SYNTAX INTEGER (0. .65535)
MAX-ACCESS read-only
STATUS current

DESCRIPTION
"An index that, coupled with transResourceld and

unitId, uniquely identifies a row in this table."”
::= { unitEquipEntry 1 }

unitEquipId OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An unique string identifier for the equipment.”

::= { unitEquipEntry 2 }

unitEquipType OBJECT-TYPE

SYNTAX INTEGER {
ciscoRouter(1), sunUnix-Host(2), hpUnix-Host(3),

rf-transmitter(4), criu(5), cap(6), rmon2-sim(7)
¥
MAX-ACCESS read-only
STATUS current

DESCRIPTION
"An integer that identifies -the type of equipment."”

::= { unitEquipEntry 3 }

unitEquipIpAddress OBJECT-TYPE
SYNTAX IpAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"If applicable, the IP address of the equimpment."

::= { unitEquipEntry 4 }

unitEquipOpStatus OBJECT-TYPE
SYNTAX INTEGER {
unknown(0), c-1(1), c-2(2), ¢c-3(3), c-4(4),
down(5), failed(6)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A integer which identifies the operational status of
the equipment."
::= { unitEquipEntry 5 1}

unitEquipAdminStatus OBJECT-TYPE

SYNTAX INTEGER {
locked(1), unlocked(2)

52

}

MAX-ACCESS read-write
STATUS current
DESCRIPTION

"A integer which identifies the administrative status of
the equipment."
::= { unitEquipEntry 6 }

-- End unitEquipTable

unitLogPortTable OBJECT-TYPE

SYNTAX SEQUENCE OF UnitLogPortEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"The logical port table is a list of the logical
ports on a particular piece of equipment that is part
of a particular unit and part of a particular
transmission resource.

A corresponding row in unitEquipTable will exist
for rows in this table."

::= { unitNet 3 7}

unitLogPortEntry OBJECT-TYPE
SYNTAX UnitLogPortEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A set of parameters to identify and describe
a logical port.”
INDEX { transResourceld, unitId, unitEquipIndex,
unitLogPortId }
::= { unitLogPortTable 1 }

UnitLogPortEntry ::= SEQUENCE {
unitLogPortId Integer32,
unitLogPortType INTEGER,
unitLogPortOpStatus INTEGER,

unitLogPortAdminStatus INTEGER

unitLogPortId OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The port number."
::= { unitLogPortEntry 1 }

53

unitLogPortType OBJECT-TYPE
SYNTAX INTEGER {
tcp-logPort (1), other-logPort(2)
}

MAX-ACCESS read-only
STATUS current
DESCRIPTION
“An integer that identifies the type of port."
::= { unitLogPortEntry 2 }

unitLogPortOpStatus OBJECT-TYPE
SYNTAX INTEGER {
unknown(0), ¢c-1(1), c-2(2), ¢-3(3), c-4(4),
down(5), failed(s6)
¥
MAX~ACCESS read—-only
STATUS current

DESCRIPTION
"A integer which identifies the operational status of

the port."
::= { unitLogPortEntry 3 }

unitLogPortAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
locked(1), unlocked(2)
}
MAX-ACCESS read-write
STATUS current

DESCRIPTION
"A integer which identifies the administrative status of

the port."
::= { unitLogPortEntry ¢ 2

~— End unitLogPortTable

unitPhysPortTable OBJECT-TYPE

SYNTAX SEQUENCE OF UnitPhysPortEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"The physical port table is a list of the physical
ports of a particular piece of equipment that is part
of a particular unit and part of a particular
transmission resource.

A corresponding row in unitEquipTable will exist
for rows in this table."

54

::= { unitNet 4 }

SYNTAX UnitPhysPortEntry
MAX-ACCESS not-accessible
STATUS current
- DESCRIPTION
"A set of parameters to identify and describe
a physical port."
. INDEX { transResourceld, unitId, unitEquipIndex,
unitPhysPortId }
::= { unitPhysPortTable 1 }

|
|
|
unitPhysPortEntry OBJECT-TYPE

UnitPhysPortEntry ::= SEQUENCE {

unitPhysPortId - Integer32,
unitPhysPortType INTEGER,
unitPhysPortOpStatus INTEGER,

unitPhysPortAdminStatus INTEGER

unitPhysPortId OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The port number. For instance, in the case of
an ethernet interface, this would be the index
of the interface in the ifTable. "

::= { unitPhysPortEntry 1 }

unitPhysPortType OBJECT-TYPE

SYNTAX INTEGER {
ethernet-port(1), ds3-port(2), ti-port(3),
satcom-port(4), fddi-port(5), hssi-port(6),
atm-port(7)

}

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"An integer that identifies the type of port."
. ::= { unitPhysPortEntry 2 }

unitPhysPortOpStatus OBJECT-TYPE
SYNTAX INTEGER {
unknown(0), c¢-1(1), c-2(2), c-3(3), c-4(4),
down(5), failed(6)

MAX-ACCESS read-only

33

STATUS current

DESCRIPTION
"A integer which identifies the operational status of
the port."

::= { unitPhysPortEntry 3 }

unitPhysPortAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
locked(1), unlocked(2)
}
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A integer which identifies the administrative status of
the port."
::= { unitPhysPortEntry 4 }

—— End unitPhysPortTable

unitLinkTable OBJECT-TYPE

SYNTAX SEQUENCE OF UnitLinkEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"The link table is a list of the links
between physical ports, typically where the
physical ports are on different units.

Corresponding entries will exist in the
unitPhysPortTable.

If either end of the link resides on the local
unit, a corresponding row in the unitPhysPortTable
will be present.

By convention, if one end of a link is on the local
unit, it will be first in the unitLinkTable indexing.
If neither end of the link is on the local unit,

the unit with the lower unitld will be first in

the indexing.”

::= { unitNet 5 }

unitLinkEntry OBJECT-TYPE

SYNTAX UnitLinkEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"A set of parameters to identify and describe
a link between physical ports."

INDEX { transResourceld, unitIdA, unitEquipIndexA,

unitPhysPortIdA, unitIdB,

56

unitEquipIndexB, unitPhysPortIdB }

::= { unitLinkTable 1 }

UnitLinkEntry ::= SEQUENCE {

unitIdA
unitEquipIndexA
unitPhysPortIdA
unitIdB
unitEquipIndexB
unitPhysPortIdB
unitLinkId
unitLinkType
unitLinkDescription
unitLinkMediaType
unitLinkSecKeyld
unitLinkDistance
unitLinkPower
unitLinkOpStatus
unitLinkAdminStatus
}

unitIdA OBJECT-TYPE
SYNTAX Integer32

Integer32,
Integer32,
Integer32,
Integers32,
Integer32,
Integer32,
Integer32,
INTEGER,
DisplayString,
INTEGER,
Integer32,
Integer32,
Integer32,
INTEGER,
INTEGER

MAX~ACCESS read-only

STATUS current
DESCRIPTION

"UnitId of unit on one side of link."
::= { unitLinkEntry 1 }

unitEquipIndexA OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS read-only

STATUS current
DESCRIPTION

"UnitEquipIndex for the equipment on one side of link."

::= { unitLinkEntry 2 }

unitPhysPortIdA OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS read-only

STATUS current
DESCRIPTION

"UnitPhysPortld of port on one side of link."
::= { unitLinkEntry 3 }

unitIdB OBJECT-TYPE
SYNTAX Integer32

MAX-ACCESS read-only

STATUS current
DESCRIPTION

"Unitld of unit on other side of link."

(@]
-~

::= { unitLinkEntry 4 }

unitEquipIndexB OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"UnitEquipIndex for the equipment on other side of link."

::= { unitLinkEntry 5 }

unitPhysPortIdB OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"UnitPhysPortIld of port on other side of link."

::= { unitLinkEntry 6 }

unitLinkId OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An integer indentifing the link."
::= { unitLinkEntry 7 }

unitLinkType OBJECT-TYPE
SYNTAX INTEGER {
csLoop(1), csTrunc(2), psLoop(3), psTrunk(4),
eplrs(5), jtids(6), lan(7), hfLink(8), shfLos(9),
shfSatcom(10), uhfLos(11), vhfLink(12)

}

MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An integer that identifies the type of port."

::= { unitLinkEntry 8 }

unitLinkDescription OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A description of the link.”
::= { unitLinkEntry 9 }

unitLinkMediaType OBJECT-TYPE
SYNTAX INTEGER {
satellite(1), troposcatter(2), groundWavelLos(3),
coaxialCable(4), multiModeFiber(5), singleModeFiber(s),
twoWireCable(7), fourWireCable(8), thinWireEthernet(9),

38

waveGuide (10), ionosphericScatterHf(11)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An integer indentifing the link media type."
::= { unitLinkEntry 10 }

unitLinkSecKeyId OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An integer indentifing security key."
::= { unitLinkEntry 11 }

unitLinkDistance OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Link distance in meters."
::= { unitLinkEntry 12 }

unitLinkPower OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Link power in watts."
::= { unitLinkEntry 13 }

unitLinkOpStatus OBJECT-TYPE
SYNTAX INTEGER {
unknown(0), c-1(1), <¢-2(2), ¢~3(3), c-4(4),
down(5), failed(6)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A integer which identifies the operational status of
the link."
::= { unitLinkEntry 14 }

unitLinkAdminStatus OBJECT-TYPE
SYNTAX INTEGER {
locked(1), unlocked(2)

}
MAX-ACCESS read-write
STATUS current
DESCRIPTION

59

“A integer which identifies the administrative status of
the link."
::= { unitLinkEntry 15 }

-- End unitlinkTable

unitChanTable OBJECT-TYPE
SYNTAX SEQUENCE OF UnitChanEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The channel table is a list of the channels
in a link.

A corresponding row imn unitLinkTable will exist
for rows in this table."

::= { unitNet 6 }

unitChanEntry OBJECT-TYPE
SYNTAX UnitChanEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A set of parameters to identify and describe
a channel.”
INDEX { transResourceld, unitIdA, unitEquipIndexi,
unitPhysPortIdA, unitIdB,
unitEquipIndexB, unitPhysPortIdB, unitChanId }
::= { unitChanTable 1 1}

UnitChanEntry ::= SEQUENCE {
unitChanid Integer3z,
unitChanType Integer32,
unitChanBandWidth Integer32,
unitChanPower Integer3z,
unitChanOpStatus INTEGER,
unitChanAdminStatus INTEGER

>

unitChanId OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An integer indentifing the channel.”
::= { unitChanEntry 1 }

unitChanType OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-only
STATUS current

60

DESCRIPTION
"An integer that identifies the type of channel."

::= { unitChanEntry 2 }

unitChanBandWidth OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Channel bandwidth in kHz.' .
::= { unitChanEntry 3 }

unitChanPower OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Channel power in watts."
::= { unitChanEntry 4 }

unitChanOpStatus OBJECT-TYPE

SYNTAX INTEGER {
unknown(0), c-1(1), ¢-2(2), c-3(3), c-4(4),

down(5), failed(6)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A integer which identifies the operational status of
the channel."
::= { unitChanEntry 5 }

unitChanAdminStatus OBJECT-TYPE

SYNTAX INTEGER {
locked(1), unlocked(2)

¥
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"A integer which identifies the administrative status of

the channel.”
::= { unitChanEntry 6 }

-—- End unitChanTable

~- The inmNotification Group

inmAlarmNextIndex OBJECT-TYPE
SYNTAX INTEGER (0..65535)
MAX-ACCESS read-only
STATUS current

61

DESCRIPTION

"The index number of the next appropriate

unassigned entry in the inmAlarmTable.

0 indicates that no unassigned entries are

available.

A management station should create new entries in
the inmAlarmTable using this algorithm: first,
issue a management protocol retrieval operation to
determine the value of inmAlarmNextIndex; and,
second, issue a management protocol set operation
to create an instance of the inmAlarmStatus

object setting its value to “createAndGo” or
“createAndWait’ (as specified in the description

of the RowStatus textual convention)."

::= { inmNotification 1 }

inmAlarmTable OBJECT-TYPE

STATUS current
DESCRIPTION

SYNTAX SEQUENCE OF InmAlarmEntry
MAX-ACCESS not-accessible

"A list of inmAlarm entries."™

::= { inmNotification 2 }

inmAlarmEntry OBJECT-TYPE
SYNTAX InmAlarmEntry

MAX-ACCESS not-accessible

STATUS current
DESCRIPTION

"A list of parameters that determine the alarm

condition for opStatus variables. "

INDEX { inmAlarmIndex }

::= { inmAlarmTable 1 }

InmAlarmEntry ::= SEQUENCE {
inmAlarmIndex
inmAlarmVariable
inmAlarmValue
inmAlarmRisingThreshold
inmAlarmFallingThreshold
inmAlarmRisingEventIndex

inmAlarmFallingEventIndex

inmAlarmStatus

}

inmAlarmIndex OBJECT-TYPE

SYNTAX INTEGER (1..65535)

MAX-ACCESS read-only
STATUS current
DESCRIPTION

INTEGER,
InstancePointer,
Integer32,
Integer3z,
Integer32,
INTEGER,
INTEGER,
RowStatus

The value

"An index that uniquely identifies an entry in the
inmAlarm table. "
::= { inmAlarmEntry 1 }

inmAlarmVariable OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"A pointer to a specific OpStatus instance."

::= { inmAlarmEntry 2 }

inmAlarmValue OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current

DESCRIPTION
"The value of the opStatus variable during the last

sampling period. This value is updated when ever
the opStatus variable changes.

::= { inmAlarmEntry 3 }

inmAlarmRisingThreshold OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"A threshold for the opStatus variable. When the
current value is greater than or equal to
this threshold, and the value at the last sampling
interval was less than this threshold, a single
event will be generated. A single event will also
be generated if the opStatus variable changes from
a value above this threshold to a value greater yet.

An attempt to modify this object will fail with an
“inconsistentValue” error if the associated
inmAlarmStatus object would be equal to ‘active~’
both before and after the modification attempt."

::= { inmAlarmEntry 4 }
inmAlarmFallingThreshold OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS read-create

63

STATUS current

DESCRIPTION
"A threshold for the opStatus variable. When the
current sampled value is less than or equal to
this threshold, and the value at the last sampling
interval was greater than this threshold, a single
event will be generated.

An attempt to modify this object will fail with an
“inconsistentValue” error if the associated
inmAlarmStatus object would be equal to “active’
both before and after the modification attempt."”

::= { inmAlarmEntry 5 }

inmAlarmRisingEventIndex OBJECT-TYPE

SYNTAX INTEGER (0..65535)

MAX-ACCESS read—-create

STATUS current

DESCRIPTION
"The index of the inmEventEntry that is used when
a rising threshold is crossed. The inmEventEntry
identified by a particular value of this index is
the same as identified by the same value of the
inmEventIndex object. If there is no
corresponding entry in the inmEventTable, then no
association exists. In particular, if this value
is zero, no associated event will be generated, as
zero is not a valid inmEventIndex.

An attempt to modify this object will fail with an

“inconsistentValue” error if the associated

inmAlarmStatus object would be equal to “active”

both before and after the modification attempt."
::= { inmAlarmEntry 6 }

inmAlarmFallingEventIndex OBJECT-TYPE

'SYNTAX INTEGER (0..65535)

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"The index of the inmEventEntry that is used when
a falling threshold is crossed. The
inmEventEntry identified by a particular value of
this index is the same as identified by the same
value of the inmEventIndex object. If there is
no corresponding entry in the inmEventTable, then
no association exists. In particular, if this
value is zero, no associated event will be
generated, as zero is not a valid inmEventIndex.

64

An attempt to modify this object will fail with an

“inconsistentValue’ error if the associated

inmAlarmStatus object would be equal to “active”

both before and after the modification attempt."
::= { inmAlarmEntry 7 }

inmAlarmStatus OBJECT-TYPE

SYNTAX RowStatus

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"The status of this inmAlarm entry. This object
may not be set to “active” unless the following
columnar objects exist in this row:
inmAlarmVariable,
inmAlarmRisingThreshold,
inmAlarmFallingThreshold,
inmAlarmRisingEventIndex,
inmAlarmFallingEventIndex"

::= { inmAlarmEntry 8 }

-— The inmEvent table defines the set of events gemerated by
-- the imm. Each entry in the inmEventTable associates an event
—-- type with the notification method and associated parameters.

inmEventNextIndex OBJECT-TYPE

SYNTAX INTEGER (0..65535)

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The index number of the next appropriate
unassigned entry in the inmEventTable. The value
0 indicates that no unassigned entries are
available.

A management station should create new entries in
the inmEventTable using this algorithm: first,
issue a management protocol retrieval operation to
determine the value of inmEventNextIndex; and,
second, issue a management protocol set operation
to create an instance of the inmEventStatus
object setting its value to “createAndWait~ or
“createAndGo”."

::= { inmNotification 3 }

inmEventTable OBJECT-TYPE

SYNTAX SEQUENCE OF InmEventEntry
MAX-ACCESS not-accessible
STATUS current

65

DESCRIPTION
"A list of events."

::= { inmNotification 4 }

inmEventEntry OBJECT-TYPE
SYNTAX InmEventEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIPTION
"A set of parameters that describe an event that

is generated when certain conditions are met.”
INDEX { inmEventIndex }
::= { inmEventTable 1 }

InmEventEntry ::= SEQUENCE {

inmEventIndex INTEGER,
inmEventID OBJECT IDENTIFIER,
inmEventDescription DisplayString,
inmEventEvents Counter32,
inmEventLastTimeSent TimeStamp,
inmEventStatus RowStatus

¥

inmEventIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index that uniquely identifies an entry in the

inmEvent table. Each such entry defines an event

generated when the appropriate conditions occur.”
::= { inmEventEntry 1 }

inmEventID OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-create
STATUS current

DESCRIPTION
"The authoritative identification of the event

type generated by this entry. This variable
occurs as the second VAR bind of an InformRequest-
PDU. 1If this OBJECT IDENTIFIER maps to a
NOTIFICATION-TYPE the sender will place the
objects listed in the NOTIFICATION-TYPE in the
VAR bind list."

::= { inmEventEntry 2 }

inmEventDescription OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..127))
MAX-ACCESS read-create
STATUS current

66

DESCRIPTION

"A comment describing this inmEvent entry."
::= { inmEventEntry 3 }

inmEventEvents OBJECT-TYPE

SYNTAX Counter32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The number of events caused by event generators
associated with this inmEvent entry."

::= { inmEventEntry 4 }

inmEventLastTimeSent OBJECT-TYPE

SYNTAX TimeStamp

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The value of sysUpTime at the time this inmEvent
entry last generated an event. If this entry has
not generated any events, this value will be
zero."

DEFVAL { 0 }

::= { inmEventEntry 5 }

inmEventStatus OBJECT-TYPE

SYNTAX RowStatus

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"The status of this inmEvent entry. This object
may not be set to “active’ unless the following
columnar objects exist in this row: inmEventID,
inmEventDescription, inmEventEvents, and
inmEventLastTimeSent.

Setting an instance of this object to the value
‘destroy’ has the effect of invalidating any/all
entries in the inmEventTable, and the
inmEventNotifyTable which reference the
corresponding inmEventEntry."

::= { inmEventEntry 6 }

-- The inmEventNotifyTable is used to configure the
-- destination of notifications sent
-- when a particular event is triggered.

inmEventNotifyTable OBJECT-TYPE
SYNTAX SEQUENCE OF InmEventNotifyEntry

67

MAX-ACCESS not—accessible
STATUS current

DESCRIPTION
"A list of protocol configuration entries for

event notifications from this entity."
::= { inmNotification 5 }

inmEventNotifyEntry OBJECT-TYPE

SYNTAX InmEventNotifyEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"A set of parameters that describe the type and
destination of InformRequest-PDUs sent for a
particular event. The inmEventIndex in this
entry’s INDEX clause identifies the inmEventEntry
which, when triggered, will generate a
notification as configured in this entry. The
contextIdentity in this entry’s INDEX clause
identifies the context to which a notification
will be sent."”

INDEX { inmEventIndex, inmSessionHandleIndex }

::= { inmEventNotifyTable 1 }

InmEventNotifyEntry ::= SEQUENCE {
inmSessionHandleIndex Integer32,
inmEventNotifyStatus RowStatus

}

inmSessionHandleIndex OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-write
STATUS current

DESCRIPTION
"The index number of the scotty snmp handle to use

for this notification. This is a temporary object
that will soon be replace by something less
cryptic, but it is needed now to make things work."

::= { inmEventNotifyEntry 1 }

inmEventNotifyStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current

DESCRIPTION
"The state of this inmEventNotifyEntry. This

object may not be set to “active” unless the
following columnar objects exist in this row:
inmSessionHandleIndex."

::= { inmEventNotifyEntry 2 }

68

inmAlarmNotifications OBJECT IDENTIFIER ::= {inmNotification 6 }

inmRisingAlarm NOTIFICATION-TYPE
OBJECTS { inmAlarmVariable, inmAlarmValue,
inmAlarmRisingThreshold }

STATUS current

DESCRIPTION
"An event that is generated when an alarm entry
crosses its rising threshold or rises again after having
crossed the rising threshold. The instances of
those objects contained within the VAR bind list
are those of the alarm entry which generated this
event."”

::= { inmAlarmNotifications 1 }

inmFallingAlarm NOTIFICATION-TYPE
OBJECTS { inmAlarmVariable, inmAlarmValue,
inmAlarmFallingThreshold }

STATUS current

DESCRIPTION
"An event that is generated when an alarm entry
crosses its falling threshold The instances of
those objects contained within the VAR bind list
are those of the alarm entry which generated this
event."

;1= { inmAlarmNotifications 2 }

inmOpStatusDependencyNextIndex OBJECT-TYPE

SYNTAX INTEGER (0..65535)

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The index number of the next appropriate
unassigned entry in the inmOpStatusDependencyTable.
The value O indicates that no unassigned entries are
available.

A management station should create new entries in
the inmOpStatusDependencyTable using this algorithm:
first, issue a management protocol retrieval operation
to determine the value of inmOpStatusDependencyNextIndex;
and, second, issue a management protocol set operation
to create an instance of the inmOpStatusDependencyStatus
object setting its value to “createAndGo~” or
“createAndWait® (as specified in the description
of the RowStatus textual convention)."

::= { inmNotification 7 }

inmOpStatusDependencyTable OBJECT-TYPE
SYNTAX SEQUENCE OF InmOpStatusDependencyEntry

69

MAX-ACCESS not-accessible

STATUS current

DESCRIPTIGN
"“A list a list of opStatus dependency entries for
this inm."

::= { inmNotification 8 }

inmOpStatusDependencyEntry OBJECT-TYPE

SYNTAX InmOpStatusDependencyEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
“"Parameters that describe the dependency between
OpStatus variables."

INDEX { inmOpStatusDependencyIndex }

::= { inmOpStatusDependencyTable 1 }

InmOpStatusDependencyEntry ::= SEQUENCE {

inmOpStatusDependencylIndex INTEGER,
dependentOpStatus OBJECT IDENTIFIER,
independentOpStatus OBJECT IDENTIFIER,
opStatusWeight INTEGER,
inmOpStatusDependencyStatus RowStatus

¥

inmOpStatusDependencyIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index that uniquely identifies an entry in the
inmOpStatusDependency table. "
::= { inmOpStatusDependencyEntry 1 }

dependentOpStatus OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The dependent opStatus variable.™
::= { inmOpStatusDependencyEntry 2 }

independentOpStatus OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"An independent opStatus variable.”
::= { inmOpStatusDependencyEntry 3 }

opStatusWeight OBJECT-TYPE
SYNTAX INTEGER (1..100)

70

MAX~ACCESS read-create

STATUS current

DESCRIPTION
"The weight given to this independent opStatus
variable. This number should be between 1 and
100. For a given dependent variable, if the weights
of all independent variables are less than 100, then
a linear weighted average is used. If the weight
of at least one independent variable is 100, then the
dependent opStatus is calculated as the average of
all independent opStatus variables with weight equal
to 100."

::= { inmOpStatusDependencyEntry 4 }

inmOpStatusDependencyStatus OBJECT-TYPE

SYNTAX RowStatus

MAX-ACCESS read-create

STATUS current

"~ DESCRIPTION

"The state of this inmOpStatusDependencyEntry. This
object may not be set to “active’ unless the
following columnar objects exist in this row:
dependentOpStatus, independentOpStatus, opStatusWieght."

::= { inmOpStatusDependencyEntry 5 }

71

APPENDIX B: AICS MANAGEMENT APPLICATION CODE

The code presented in this appendix represents only a fraction of the code which makes up
the entire AMA program. This code was selected and edited to give the experienced programmer
a general idea of how the the AMA program works. This code is discussed in section 2 of this
document.

Appendix B.1: Main Program

#!/usr/local/bin/scwish

BRI R R R R R R R R R R R R R R R R R R R e
#it

AICS Management Application Program (Version 0.30)

##

This program is written in the Scotty Wish extended Tcl/Tk

shell. Yeah for the University of Braunschweig and all the

people that worked on the Scotty program.

#it

This file is the main program that starts up the

AICS Manager Application Program. This file starts up both the

agent and the GUI.

#it

Everett W. Jacobs May 1996

##
e S S R S s S S s

##
no window required for the agent
it

wm withdraw .

##
Expand the auto_path to auto load script files when needed.
##

cd $env(AMALIB)

set auto_path [concat $scotty_library/agents $auto_path]
if {[file exists ./tclIndex]} {
set auto_path [concat . $auto_path]

3

##
Set some variables
##

73

source ./ama.conf

#i
check if invocation was correct

##

proc usage {} {
puts stdout {usage: ama~aa [commPlan] [-interp interpreter]}

exit

}

set commPlan $defaultCommPlan
global tkinedInterp
set tkinedInterp ""

for {set i 0} {$i < $argc} {incr i} {

switch ~exact —- [lindex $argv $i] {
—~interp {
incr i

if {$i < $arge} {
set tkinedInterp [lindex $argv $i]

} else {
puts stderr "Missing argument following -interp switch.”
usage
}
}
default {
set commPlan [lindex $argv $il
}
}
}
##

Load the aics MIB definition, initialize AA and AMA.
##

foreach mibfile $MIBFILES {
mib load $mibfile
}

##

fire up an agent and initilize
##

AA_Init $commPlan

##

Run necessary configuration procedures
##

74

Config_Check $configCheckList

##
fire up the ama GUI and initilize
##

puts "Starting AMA GUI in 10 seconds...

after 10000 exec $TOPDIR/ama_init &

75

Appendix B.2: AMA Configuration File

BRR R RR B R R R R R R R R R R R R R R R R R R R
#

Configuration file for the AICS Manager Application Program

#

BB R R R R R R R R R R R R R R
#

ama.conf

#
BB R R A R R R R R R R R R R R

initialize some variables

set commPlanDb_filename commPlanDb
set defaultCommPlan DEFAULT

set TOPDIR $env(AMALIB)

set MIBDIR ${TOPDIR}/../mibs

set TRAPPORT 1162

set TRAPCOMMUNITY(mlm) inmMim

set INFORMPORT 1163

set AGENTPORT 1701

turn on (or off) authentication on ama to ama exchanges

set AUTHENTICATION on
##tset AUTHENTICATION off

ordered list of mib files to load

set MIBFILES [1ist $MIBDIR/nrad_v2.mib $MIBDIR/aics_v2.mib \
$MIBDIR/aics_traps.mib]
set MIBFILES [list $MIBDIR/aics_vi.mib]

ordered list of configurable items

set configCheckList {OpStatusDependency InmSnmpSession Mlm Rmon2Sim}
##set configCheckList {OpStatusDependency InmSnmpSession Mlm}

##set configCheckList {OpStatusDependency InmSnmpSession Rmon2Sim}
#itset configCheckList {InmSnmpSession}

##set configCheckList {}

76

Appendix B.3: Procedure Config_Check

BRI R R R R R R R R R
AICS Manager Application Program

#

Config_Check is called from ama_aa. Config_Check starts up the

configuration procedures of the configurable items.

#
B s T

proc Config_Check {configCheckListl} {
global haltProcedures
global TOPDIR

foreach configItem $configCheckList {
switch $configitem {

OpStatusDependency -
InmSnmpSession {
Configuration $configltem

3

Mlm {
global unitInmModuleType .
foreach objInst [array names unitInmModuleType] {
if {$unitInmModuleType($objlnst) == "mim"} {
exec $TOPDIR/mlm_mdp_script &
lappend haltProcedures {Mim_Halt}
break
}
}
}

Rmon2Sim {
global unitEquipType unitEquipIpAddress
foreach objInst [array names unitEquipTypel {
if {$unitEquipType($objInst) == "rmon2-sim"} {
exec $TOPDIR/rmon2sim_script $unitEquipIpAddress($objInst) &
lappend haltProcedures {Rmon2Sim_Halt}
break
}
}
}

default {
puts stdout "Config_Check: Unrecognized config item: $configltem"

}

Appendix B.4: Procedure Configuration

HERR R SR R R R R R R R R R R R R R R R

#
#

¥ HHHEHR

AICS Manager Application Program

Configuration is called from Config_Check or the scripts that are
invoked from Config_Check. This procedures builds the
memberTableByPropertyGroup, propertyTableByPropertyGroup, and
memberTableByProperty tables, builds the policy statements, and
invokes the MDP for a given configurable item.

e S R S R

proc Configuration {configItem} {

HHHEHE R

H R HEHEH R H

#

By looking at the mib-cache the Get_Property_Groups_Members_[...] procedure
creates the memberTableByPropertyGroup(propertyGroup) array.

The value of memberTableByPropertyGroup(propertyGroup) is a list

of lists., e.g., if one wanted to include the hostname and port for

a member. ..

memberTableByPropertyGroup(hpUnix-Host) {{erebus 161} {styx 161}}

Get_Property_Group_Members_[set configItem] memberTableByPropertyGroup

the association between properties and

propertyGroup would be read in from the policy database, i.e.,

the procedure Get_Properties reads the policy groups section of the
policy data base to create the propertyTableByPropertyGroup(properties)
array

Get_Properties $configltem propertyTableByPropertyGroup

Create the memberTableByProperty(properties) array

if {[info exists memberTableByPropertyl} {
unset memberTableByProperty

}

foreach i [array names propertyTableByPropertyGroup] {
foreach j $propertyTableByPropertyGroup($i) {
if {[info exists memberTableByPropertyGroup($i)l} {
foreach k $memberTableByPropertyGroup($i) {
lappend memberTableByProperty($j) $k
3
}
}
3

H W H #H H N H

H H W H R

The rules for the configltem (which will be passed to the front end
of the Mdp) are read in from the policy rules data base.

set ruleList [Get_Rules $configltem]
The rules are then filled in with the members (extracted from the MIB Cache
for the current mission ahove) that have the appropriate properties.

set policyList [Expand_Rules $rulelist memberTableByProperty]
Call the Management Doctorine Program routine for the appropriate
configltem (Mdp_$configltem). Mdp_$configltem will interprete all the
policies in the policyList and proceed to perform

the required configuration.

Mdp_[set configltem] $policyList

79

Appendix B.5: Properties Data Base File

BRBH R BB RS ERRHEREH E R R R RE
Properties data base file

Lines in this file starting with "#" or "%" are comments.
Blank lines are ignored.

The first string in each line of this file is a property group.

All additional strings on each line are properties in the property group.
In this case, each property group only has one property. In general,
each property group can have many properties.

B R R R R R S R R R R S R R R R

inmsnmpsessionProperties

B R R R R R S R R R R R R RN

H R H R R R HHH R R

sup_primary-roc
sup_secondary-roc
sup_other-roc
sup_primary-noc
sup_secondary-noc
sup_other-noc
sub_primary-loc
sub_secondary-loc
sub_other-loc
sub_primary-roc
sub_secondary-roc
sub_other-roc
sub_primary-noc

sub_secondary-noc .

sub_other-noc

sup_primary-roc-snmpSession
sup_secondary-roc-snmpSession
sup_other-roc—-snmpSession
sup_primary-noc-snmpSession
sup_secondary-noc—snmpSession
sup_other—-noc—-snmpSession
sub_primary-loc—snmpSession
sub_secondary-loc-snmpSession
sub_other-loc-snmpSession
sub_primary-roc-snmpSession
sub_secondary-roc-snmpSession
sub_other-roc-snmpSession
sub_primary-noc-snmpSession
sub_secondary-noc-snmpSession
sub_other—-noc-snmpSession

80

Appendix B.6: Policy Rules File

B S e e
Policy Rule File

Lines in this file starting with "#" or ")" are comments
the syntax of a line in this file is...
Alabels:propertyA [Blabels:propertyB ...] {policy_template}

where Alabels has the form
labelAi[,labelA2...]

which means that "policy_template” will be replicated once for each
"member” (usually a network addressable unit) which is associated with
a property group which includes propertyA (or propertyB). The member
will be substituted for each occurrence of the label in the template.
The label must be separated from other alphanumeric characters in the
template by at least one non—alphanumeric character.

H HEHHH RS R

RRBRR R R R AR R R R R R R R R R
#

inmsnmpsessionPolicyRules

#

B R R R R R R R R R R RN i

Policies for setting up INM SNMP sessiomns:

#

#

#

r is the ip address
p is the port

i is the table index
#

#

#

#

#

policy templates:

{session_config r p i <context> <manager|agent>}

{inform_config i <opStatus object> <rising threshold> <falling threshold>}
{poll_config i <opStatus object> <polling interval (seconds)>}
#
r,p,i:sup_primary-roc-snmpSession {session_config r p i max-access agent}
T,p,i:sup_primary-roc-snmpSession {inform_config i missionOpStatus 3 1 }
r,p,i:sup_primary-roc-smmpSession {inform_config i userAppOpStatus 3 1 }
r,p,i:sup_primary-roc-snmpSession {inform_config i commServiceOpStatus 3 1 }
r,p,i:sup_primary-roc-snmpSession {inform_config i transResourceOpStatus 3 1 }
r,p,i:sup_secondary-roc-snmpSession {session_config r p i readOnly agent}
r,p,i:sup_other-roc-snmpSession {session_config r p i noSec-readOnly agent}
r,p,i:sup_primary-noc-snmpSession {session_config r p i max-access agent}
T,p,1i:sup_primary-noc-snmpSession {inform_config i missionOpStatus 3 1 }
r,p,i:sup_primary-noc-snmpSession {inform_config i userAppOpStatus 4 1 }

81

r,p,i:
r,p,i:
r,p,i:
r,p,i:
r,p,i:
r,p,i:
r,p,i:
r,p,i:
r,p,i:
r,p,i:
r,p,i:
r,p,i:
r,p,i:
r,p,i:

sup_primary-noc-snmpSession {inform_config i subOpStatus 3 1 }
sup_secondary-noc-snmpSession {session_config r p i readOnly agent}
sup_other-noc-snmpSession {session_config r p i noSec-readOnly agent}
sub_primary-loc-snmpSession {session_config r p i max-access manager}
sub_primary-loc-snmpSession {poll_config i subOpStatus 60}
sub_secondary-loc~snmpSession {session_config r p i readOnly manager}
sub_other-loc-snmpSession {session_config r p i noSec-readOnly manager}
sub_primary-roc-snmpSession {session_config r p i max-access manager}
sub_primary-roc-snmpSession {poll_config i subOpStatus 60}
sub_secondary-roc-snmpSession {session_config r p i readOnly manager}
sub_other-roc-snmpSession {session_config r p i noSec-readOnly manager}
sub_primary~noc-snmpSession {session_config r p i max-access manager}
sub_secondary-noc-snmpSession {session_config r p i readOnly manager}
sub_other-noc-snmpSession {session_config r p i noSec-readOnly manager’}

82

REPORT DOCUMENTATION PAGE N 0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, inciuding
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefterson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1997 Final: Dec 1995 — Sep 1996

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AUTOMATED INTEGRATED COMMUNICATIONS SYSTEMS (AICS) PE: 0603794N

INTEGRATED NETWORK MANAGER PROTOTYPE DOCUMENTATION ’

6. AUTHOR(S)

E. W. Jacobs, M. E. Inchiosa, L. M. Gutman, C. T. Barber

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERF%?MING OERGANIZATION
. REPORT NUMBER

Naval Command, Control and Ocean Surveillance Center (NCCOSC)

RDT&E Division TR 1735

San Diego, California 92152-5001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Space and Naval Warfare Systems Command

SPAWAR PD 13

2451 Crystal Drive
Arlington, VA 22245-5200

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report documents the Integrated Network Manager (INM) prototype development and integration effort,
undertaken as part of the FY 96 Automated Integrated Communications Systems (AICS) program. The AICS
architecture describes a hierarchy of INMs, where local operations centers (LOCs), the INMs at the lowest level of the
hierarchy, are responsible for the communications/network assets under their purview. The AICS architecture is primarily
targeted for an environment where INMs are commonly separated from other INMs by RF links. The INM prototype
work centered on development of the AICS Management Application (AMA). The ultimate vision for AICS is a highly
automated network management system where its functions are implemented using standards-based management
protocols, and where many operations are carried out in a virtually unattended mode. The prototype INM provides a
working example demonstrating aspects of this ultimate vision, and provides a starting point for development of a
network management system that can evolve with new technology.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Mission Area: Communications 88

network management

simple network management protocol (SNMP) 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540-01-280-5500

Standard form 298 (FRONT)

21a. NAME OF RESPONSIBLE INDIVIDUAL

E. W. Jacobs

21b. TELEPHONE (include Area Code)

(619) 553-1614
jacobs@nosc.mil

21¢. OFFICE SYMBOL

Code D364

NSN 7540-01-280-5500

Standard form 2398 (BACK)

INITIAL DISTRIBUTION

Code D0012
Code D0271
Code D0274
Code D0271
Code D364
Code D805
Code D82
Code D8205
Code D827
Code D827
Code D8405
Code D8505

Patent Counsel
Archive/Stock
Library

D. Richter

E. W. Jacobs
M. S. Kvigne
R. J. Kochanski
K. R. Casey

L. W. Gutman
R. L. Merk
B.J. Marsh

R. D. Peterson

Defense Technical Information Center
Fort Belvoir, VA 22060-6218

NCCOSC Washington Liaison Office
Washington, DC 20363-5100

Center for Naval Analyses
Alexandria, VA 22302-0268

(D
(6)
@)
(1
(1
(D
(D
(D
(D
0y
(D
ey

4

Navy Acquisition, Research and Development
Information Center (NARDIC)
Arlington, VA 22244-5114

GIDEP Operations Center
Corona, CA 91718-8000

Space and Naval Warfare Systems Command
Arlington, VA 22245-5200

Space and Naval Warfare Systems Command
San Diego, CA 92152-5002

Naval Command, Control and Ocean
Surveillance Center, In-Service
Engineering, East Coast Division

(NISE East)

)

3)

